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ABSTRACT

/~

"/ Time series models with autoregressive, moving averagé and mixed
autoregressive-moving average correlation structure and with symmetric,
heavy-tailed, non-normal marginal distfibutions, called f-Laplace, are
considered.

First, a flexible mixed model NLARMA(p,q) with Laplace (double
exponential) marginals is investigated. . The correlation structure for
several special cases is deri?ed. ‘fhé innovation sequence for the
second-order autoregressive case, NLAR(2), is derived. Parameter
estimation in the NLAR(1) models is discussed in terms of moments, least
squares and maximum likelihood.

. Second, a family of continuous random c?efficient models with

,

2-Laplace distributions are examined. The 1~Laplace distribution is
described along with a useful transformation. The correlation structure
for special cases is derived. For a special case when % is one, the
BELAR(1) model with Laplace marginals, the maximum likelihood estimator
of serial correlation is derived. Least squares estimates are also
derived using the concept of a linear residual. These estimators of
correlation, along with other estimators of location and scale are
compared in a small simulation study.

"2 Thirdly, the NLAR(1) and the BELAR(1) processes are compared using
higher order residual anq}yses based on the uncorrelated, but dependent
cob n )
linear residuals, Tﬁnfnr
Finally, open problems, as well as possible extensions and

applications of the analyses given in this thesis are discussed.
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I. INTRODUCTION

In standard time series analysis, one assumes the marginal
distributions of {Xn} are Normal, i.e. Gaussian. However, a Gaussian
distribution will not always be appropriate. In earlier works by Gaver
and Lewis [Ref. 1]; Jacobs and Lewis [Refs. 2,3]; and Lawrance and Lewis
[Refs. 4,5,6], stationary non-Gaussian time series models were developed
for variables with positive and highly skewed marginal distributions.

There still remain other situations for which Gaussian marginals are
inappropriate, i.e. the marginal time series variable being modelled,
although not skewed or inherently positive valued, has a large kurtosis
or long-tailed distribution. The position errors in a large navigation
system have such a distribution. In particular, Hsu [Ref. 7] modelled
pooled position errors using the double exponential distribution (also
called the Laplace distribution). Also McGill [(Ref. 8] showed that the
Laplace distribution provides a characterization of the error i1n a
*iming device under periodic excitation. Speech-waves are modelled
using Laplace variables (Davenport [Ref. 9]). 1In the "speech-like"
process given by the linear AR(1) model

Ky o= oX ¢ (1 - ety /2E | (I.1)

where .8 ¢ ¢ ¢ .9, the innovation sequence {En} is i.i.d. Laplace (Linde

and Gray [Ref. 10]). 1In image coding systems using a two-dimensional
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discrete cosine, DC, transform, Reininger and Gibson [Ref. 11] showed

a %Y
e

that the Laplace distribution gives the best approximation to the

Ay

i

distribution of the non-DC coefficients. Recently Sethia and Anderson

- [Ref. 12] required a stationary autoregressive process with Laplace
- marginals in their research in communications technology.

Even before Gaver and Lewis [Ref. 1] wrote the pioneering paper on

L the subject of autoregressive processes with a specified non-Normal

e marginal distribution, Gastwirth and Wolff [Ref.13] had derived a

solution to the linear additive first-order difference equation

X_ = oX + E_, (1.2)

for which {xn} is marginally Laplace. This result was used later by
Gastwirth and Rubin [Ref.14] within the context of robust estimation on
. dependent data. This solution to (I.2) is here called the Laplace
First-order Autoregressive Process (LAR(1)). The early solution of
(I.2) is mentioned at this point, merely to further substantiate the
claim that non-Normal, heavy-tailed distributions are of interest.

In this thesis, several time series models with a specified
. symmetric, heavy-tailed marginal distribution are presented. This
~ distribution, called the f-Laplace distribution, includes the Laplace
distribution as a special case. The approach in Chapter II extends the
1; discrete random coefficient model of Lawrance and Lewis [Ref. 6], New
Exponential Autoregressive Moving Average--NEARMA(p,q), to the case

where the marginal distribution is Laplace, also called double

Al
e
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Exponential. This class of models is called The New Laplace
Autoregressive Moving Average model, NLARMA(p,q). Several special cases
of NLARMA(p,q) are individually researched. The second-order
autoregressive model, NLAR(2), is established by showing the conditions
for existence and uniqueness and by specifying the innovation structure.
The correlation structure of NLAR(2) is also given along with results
concerning directional moments and partial time reversibility.

For the case when p = 1 and q = 0, called NLAR(1), the distribution

of the difference Xn-Xn_ is derived, providing some insight into the

1
nature of the differenced NLAR(1) model. The conditional density of Xn

given Xn is also derived, which leads to a brief investigation of the

-1

likelihood function. Parameter estimation in NLAR(1), however, is

limited to comparisons of the moment estimators and the least squares
estimators for the independent model parameters of serial correlation.

The correlation structure is derived for other models in the
NLARMA(p,q) family: the first-order moving average called NLMA(1); the
first-order mixed model called NLARMA(1,1); and the special cases of
pth-order autoregressive models called TLAR(p) that are analogous to the
TEAR(p) model of Lawrance and Lewis [Ref. 6]. These models demonstrate
the flexibility of the NLARMA(p,q) family.

In Chapter III, a family of stationary time series is developed
using continuous random coefficients in the additive difference equation
model. The marginal distribution is specified to be a member of the so-

called f%-Laplace distributions, the properties of which are described at
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. the beginning of the chapter. The "square-root Beta-Laplace" transform

4,0, 4
N

.
e

is defined. It is used to formulate the %-Laplace time series models.

l" ‘l 0

{ For the special case when £ = 1, the marginal distribution is again
: Laplace. The autoregressive model is called the Beta-Laplace First-
Order Autoregressive model, BELAR(1). The conditional density of Xn

given Xn- is derived. This leads to the derivation of a likelihood

1

function and a numerical technique to evaluate and maximize the

A '
A

[y
v

likelihood function with respect to the model parameter for serial

20
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Several facets of the parameter estimation problem are investigated
for BELAR(1). The behavior of different estimators of scale and
location are compared using the Simulation Testbed (SIMIBED) of Lewis,
Orav and Uribe [Ref. 15]. The least squares estimation theory is
-'.j‘_ . derived around the concept of a linearized residual. Asymptotic
properties are derived using results from Nicholls and Quinn [Ref. 16].
Robust estimators are defined and simulated in SIMTBED. Finally, a
) numerical scheme for finding the maximum likelihood estimator of serial
correlation is used in a small simulation study of the small sample
properties of the maximum likelihood estimator.

In the last section of Chapter III, a first-order moving average
- model is discussed. A qth-order‘ moving average model in f-Laplace

variables is also derived.
- The random coefficient approaches are not the only ways to generate

o Laplace or other variables with a specified correlation structure. The

literature contains numerous articles on generation of random sequences.
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E;ﬁ One approach put forth in several papers (Gujar and Kavanagh [Ref. 17];

Haddad and Valisalo [Ref. 18]; Li and Hammond [Ref. 19]; Liu and Munson
[Ref. 20]; Sondhi [Ref. 21]) involves passing white Gaussian noise
through a linear filter followed by a zero memory nonlinear transform,
This is a general procedure that produces exactly the required marginal
distribution and a good approximation to the autocorrelation structure.
However, the scheme lacks the simplicity of either of the methods being
proposed. Moreover, the filtering approach produces, for example, in
the first-order autoregressive case, only one process.

It is important to note that in non-Normal time series, there are
infinitely many processes with a given marginal and aotocorrelation
structure. This is the case, for example, in the two-parameter NLAR(1)
process. The differences in these processes must be explored through
higher joint moments. 1In Chapter IV, residual analyses using fourth
joint moments are derived. The ideas are modifications of those from
Lawrance and Lewis [Refs. 6, 22], who accomplished an analysis using

joint third moments within the NEAR framework. The residual analysis is

applied to show the differences in the various NLAR(1) processes and the
BELAR(1) process.

In Chapter V, open problems and possible extensions of the analyses
gliven in this thesis are discussed. Possible applications to the

analysis of wind velocity data are detailed.
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II. DISCRETE RANDOM COEFFICIENT MODELS WITH LAPLACE MARGINALS

A. INTRODUCTION

Two aspects of modelling with dependent random variables are widely
studied--the marginal distribution and the correlation structure. It is
widely known how to generate sequences with either a specified marginal
distribution or a particular correlation structure. Transforming the
random variables may have an undesirable and unknown effect on the
correlation structure. Likewise, the marginal distribution of a
filtered process may be unknown.

It is the generation of random variables with both a specified
marginal and a specified correlation structure that is discussed in this
chapter. Specifically, we want sequences with a Laplace (double
Exponential) marginal distribution and with ARMA(p,q) correlation
structures as given by Box and Jenkins [Ref. 23] for the usual linear
ARMA(p,q) models.

The following is an example of a process that has Laplace marginals.
Let [Xn} be a binary Markov chain with transition matrix P, so that
and

P[xn=o|xn_1=o] = a P[Xn=1|Xn_1=O] = 1-a

X
Let L = (-1) ME_, where {E } is an i.i.d.
n n n

1 o POX=TX | y=1d = g,

P =0|X _,=1] = 1-a

i 2°

Exponential sequence. Iif a,=a,=a, {Ln} has a Laplace marginal

distribution. However, the correlation structure is not that of an

AR{1) process. It is, in fact, easy to see that Corr(Ln,Ln_k) = !

25
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(1/2)(20-1)|k|, for k=+1,%2,..., which is not a pure geometric function
of k.

Two processes which produce an AR(1) correlation structure and a
Laplace marginal distribution are the Laplace Discrete AR(1), LDAR(1},
which is an adaption of the DAR(1) process of Jacobs and Lewis [Ref. 2],
and the linear process of Gastwirth and Wolff [Ref. 13], called the
LAR(1) process. The LDAR()) model produces an {Xn} sequence using the

first-order autoregressive equation with random coefficients

X, = VX _y* (=V)L, (II.A.1)

where {Vn} is an i.i.d. sequence of Bernoulli random variables with
P{Vn=1} = 1-P{Vn=0} = p; {Ln} is an i.i.d. sequence of Laplace random
variables. The coefficient and innovation processes from time n are
X

assumed to be independent of X This sequence produces runs

n-1""n-27°*"

of constant value when successive realizations for Vn produces the value
1. When Vn is zero, a new value is selected. Although LDAR(1) is of
limited value in general application because of this runs property, it
is significant in that it is one of the first in a series of more
general discrete random coefficient equation models for non-Normal time
series, and it produces a first-order autoregressive Markovian process

for any specified marginal distribution.

The LAR(1) model turns out to be a special case of the more general
process called the New Laplace Autoregressive Moving Average model,

NLARMA(p,n). Properties of the LAR(1) process are pointed out in the
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next section of this chapter, which gives a characterization of the
Laplace distribution.
‘ The NLARMA(p,q) model is a very useful family of time series models
that are discrete random coefficient linear difference equations. The
« models are extensions of the NEARMA(p,q) structure of Lawrance and Lewis
{Refs. 4,5,6] to those cases where the underlying marginal distribution
[ is Laplace rather than Exponential. The family provides great
L. flexibility to systems modelling, because of the broad range of
correlations and different dependency structures which are obtainable.

Section C is an examination of the second-order autoregressive model

5f of the family, NLAR(2), for p = 2 and q = 0 in NLARMA(p,q). Conditions

for the existence and uniqueness of the strictly stationary NLAR(2)

g‘ model are derived using results from Nicholls and Quinn [Ref. 16] about
%t Random Coefficient Autoregressive models of order k, RCA(k). In a

b

\ proof, very similar to that given by Lawrance and Lewis for the NEAR(2)
ff model [Ref. 6], the innovation for the NLAR(2) model is derived
if explicitly. The innovation is shown to be a convex combination of
)

scaled Laplace variables. The correlation structure in the NLAR(2)
model is shown to satisfy the Yule-Walker type equations just as do the
linear AR(2) models. Aspects of directionality and time reversibility
are also addressed.

In Section D, the first-order autoregressive model, NLAR(1), is
- described. It is a two-parameter, first-order Markov process which is a
. special case of the NLAR(2) model. The distribution of differences is

derived. The conditional density of Xn given Xn-1 and the likelihood
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%ﬁ function are also derived. The non~differentiabilifty of the likelihood
fﬁﬂ function for all values of the two parameters has prevented the
o
{*f development of the maximum likelihood estimators. Parameter estimation
7_:_‘_'. is discussed within the context of moment estimators and least squares,
f;;- using the usual linearized residual.
'f? In Section E, several different special cases of NLARMA(p,q) are i
'fi formulated and briefly discussed. The correlation structure for a
f§§ first-order moving average model, NLMA(1), and a mixed autoregressive
= moving average model, NLARMA(1,1) are given. Correlation structure is
%T derived and parameter estimation is discussed for the general pth-order
?55. autoregressive models, TLAR(p), which are special cases of the NLAR(p).
r:i Each of these models in Section E could well be the basis for
;; further research. The intent at this point is primarily to further
-fﬁ' substantiate the claim of wide versatility and tractability in modelling
N non-Normal time series within the context of the NLARMA(p,q) family.
g
il; For example, the bivariate AR(1) process with Exponential marginal
Lfé; distributions of Dewald and Lewis [Ref. 24], can be extended to the case
{i where the marginal distribution is Laplace. This, however, is not
3 discussed further in this thesis.
'gjv B. CHARACTERIZATION OF THE LAPLACE DISTRIBUTION
f}g 1. Properties of the Laplace Distribution
:. The Laplace distribution is also known as the double Exponential
1? distribution. In general, the density of a Laplace distributed

T variable, L, has two parameters--a location parameter -« < y < +=, and a
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- scale parameter A > 0. The parameter u is fixed here at zero, For
:Ef -® ¢ x < = we have

AAY

1

£ (x51) = 5+ exp(- [x|/72). (II.B.1.1)

In what follows we will define [Ln} as a sequence of i.i.d.

. random variables of the Laplace distribution with A = 1 (Standard
o
“Tf Laplace). The characteristic function of the standard Laplace variable
is
T;. ¢L(w) =T o o (o £ », (II.B.1.2)

and we have

n 0 if n 1is odd,
- E(L) = (II.B.1.3)
“ n! if n 1is even,

so that E(L) = 0, Var(L) = 2, skewness is zero, and kurtosis is 3. The

J

i value of the kurtosis indicates that the symmetric Laplace distribution
L‘-

"f has heavier tails than the normal distribution, for which the kurtosis
'%? is 0.

ij: The sum of n 2 2 i.i.d. standard Laplace variables can be
EE written as the difference of two i.i.d. random variables Y1, Y2 with
f\ Gamma distribution, shape parameter k = n and scale parameter A = 1.
o |
N
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This follows immediately from the characteristic function. Let

n
Y= ] L;; then
1=1

: n : n i n
¢Y(w) = Ty o) - = ¢Y1(w) ¢Y2(-w). (II.B.1.,4)

This result is quickly generalized. Replacingn by t > 0, we see that
[¢L(w)]t is the characteristic function for the variable X = Y1 - Y2

where Yi ~ Gamma{(t,1), i = 1,2 and Y1 and Y2 are independent. This
demonstrates that the Laplace distribution is infinitely divisible.

Another useful result is obtained from (II.B.1.4) when n = 1,
It shows that a Laplace variable is the difference of two i.i.d.
exponential (A = 1) variables. This makes it quite simple to generate
Laplace distributed variates in computer simulations.

Random variables with a standard Laplace distribution are self-

decomposable. Let .
¢€(m) = ¢L(w)/¢L(pw), 0sp <1, (I1.B.1.5)

According to Feller [Ref. 25: p. 588], if ¢€(w) is the transform of a
random variable for each 0 $ p < 1, then L is said to be self-
decomposable. But for -= < y < =

0 (W) = 01+ w1+ w) !,

1

} (II.B.1.6)

o+ (1 -0 = i) o+ (1= (1 + iw)”
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>3 =p2 + (1 =921 + w?) . (II.B.1.7)
2 |
Y
C
{ We recognize (II.B.1.6) as the product of the characteristic functions
f: of two i.i.d. innovation variables, €, and “€,, as described in the
.:‘
L EAR(1) process in [Ref. 1]. Also from (II.B.1.7)
Y
;f; 0 W.D. p?,
-.'.‘ £ = (II.B.1.8)
e L w.p. 1 - p2.
e 2. The Laplace First-Order Autoregressive Process, LAR(1)
;. The i.i.d. sequence {en} with distribution given in (II.B,.1.8)
= is the innovation process of a first-order linear autoregressive
equation
X, = pX _y * € (II.B.2.1)
.
- where {Xn} is a stationary time series with double exponential marginal
3 distribution, |p|<1. This is the LAR(1) model. It is actually a
- rediscovery in light of the fact that Gastwirth and Wolff [Ref. 13] had
N derived it earlier; also, Gastwirth and Rubin [Ref. 14] discuss it
Ny
g“ within the context of robust estimation techniques. The present account
» of LAR(1) includes new results.
- The LAR(1) model has the same properties as the EAR(1) model in
y (Ref. 1] with two important differences. First, if =1 < p < 0, negative
'8
Q serial correlations for odd lags are obtained. Secondly, it is
N
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partially time reversible in the sense that for all % and n, both of the

following are true:

2 - 2 =
E(ann+2) E(Xan*z) a, (11.B.2.2)

P(Xn 2 Xn_1) = P(Xn < Xn_ ) = 1/2f (II.B.2.3)

i
These results are derived in Section II.C and Section II.D. Note,
however, that since LAR(1) is a linear AR(1) model with non-Gaussian
innovation {en}, it is not fully time reversible (Weiss [Ref. 26]).
Also, note that this LAR(1) model has the zero defect property; when
€, = 0, then Xn/Xn_1 = p and p can be determined exactly in long enough
runs of the series {Xn}. This property is generally undesirable, but
the broader NLAR(2) model developed in the next section is free of this
defect, except for the special parameter values for which it reduces to
the LAR(1) model.

If no repeats are observed in a realization of the time series,
an extremely efficient estimator of p for LAR(1) is the median of the

ratio Xi/xi- The simulation results given in Table II.B.2.1

1°
substantiate this claim. In Section II.D.Y4 and again in III.E.5, using
the framework of the Simulation Testbed (SIMTBED) [Ref. 15], we will see
that this median ratio is for small samples very biased, and is,

apparently, asymptotically biased in all of the random coefficient AR(1)

models with a Laplace marginal distribution that we examine.
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TABLE II.B.2.1

Simulation Results using Median {Xi/Xi_ } to Estimate

1
p in the LAR(1) Process for Samples of Size 2000

True p p = med {Xi/xi-l} Comments

-.9 -.9 ~.9 occurred 1586 times
in 1999 ratios

-.2 -.2 -.2 occurred 75 times
in 1999 ratios

- -.08746 ~.1 occurred 11 times
in 1999 ratios

+.01 +,01986 +.01 never occurred in
1999 ratios

+.5 +.5 +.5 occurred 490 times
in 1999 ratios

+.75 +.75 +.75 occurred 1149

times in 1999 ratios

C. A SECOND ORDER AUTOREGRESSIVE LAPLACE TIME SERIES MODEL, NLAR(2)

1. Introduction

Using the terminoclogy from [Ref. 6] the following time series
model called NLAR(2), New Laplace Second-order Autoregressive model is
proposed. This is a special case of NLARMA(p,q) model with p = 2,
q = 0. The NLAR(2) model has four parameters, double exponential
marginal distribution for {Xn}, second-order autoregressive Markov

dependence, and autocorrelations satisfying Yule-Walker type equations.
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The stationary NLAR(2) model has the same form as the stationary
NEAR(2) model in [Ref. 6]. Writing the time series {Xn} in the form of
an additive, linear, random coefficient autoregressive difference

equation, we have for all n that

= |
Xn 81 Kn X

"
o P B KX ve (II.C.1.1)

n-2 n

where {Ké, K;} is a sequence of i.i.d. discrete bivariate random

variables with distribution

(1,0) W.p. ag,
{Kﬁ, Kg} = (0, 1) W.p. @, n=20, £1, +2, (.. 3

(0,0) W.p. 1- a, e,

{en} is an i.i.d. innovation sequence whose distribution is given in
(I1.C.2.4); and {en} and {Ka, Kg} are mutually independent and

independent of Xn X The parameter space is defined by

B PYRERR

0 s lsil S$1and 0sa, $1,1=1,2; a, + a

i 1 1. Graphs of the

<
2
admissible regions in the parameter space and the correlation space are
presented in Section II.C.3.

Equations (II.C.1.1) and (II.C.1.2) have a direct physical
interpretation. The observed process at time n, Xn' is only one of
three possibilities: 1) Xn is some multiple of what it was at time n-1,
81Xn-1’ plus some random noise €n’ ii) Xn is some multiple (possibly

different than 81), of its value at time n-2, 62X plus some

n-2"'
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N independent random noise; iii) Xn is just random noise, € independent

of everything up to time n.

A N N
ST -

2. Existence and Uniqueness

P

The work of Nicholls and Quinn [Ref. 16] on random coefficient

)‘l' .l

Yo

A

autoregressive models is relevant to the NLAR(2) process. They have
given the necessary and sufficient conditions for the existence of the
unique covariance stationary solution to the following class of

univariate random coefficient autoregressive models of order p, RCA(p):

p
. z = 151 (v, +B (D)2 . + ¢, (II.C.2.1)

n=0, +1, +2, ..., where
a. the Yi's a~e real constants;
b. {@n} is a p-vector, second-order stationary, independent process
with E(@n) = 0 and constant covariance matrix;
c. {en} is a scalar, second-order stationary, independent process,

2 for all n.

independent of {B }, with E(el) =g
They also have shown that if {gn} and {en} are i.i.d. processes,

then the solution {Zn} is strictly stationary and ergodic.

ll‘l'.‘<
0 T e Ty

Ay

= i = = ' - =
Let Yi aisi for i 1,2 and Bn(1) 81(Kn a1) and Bn(2)
M 8,(Kl - a,). Then (II.C.1.1) and (II.C.2.1) have the same form. That

. is (II.C.1.1) is an RCA(2) model if the innovation of NLAR(2) satisfies

LIS

condition (iii) above. Thus applying the results in [Ref. 16: p.31 and

p.-37], there exists a unique strictly stationary and ergodic solution to

(II.C.2.1) for Y.1 and Bn(i) as defined above, if and only if all of the
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roots of the characteristic equation
2 - 2¢ 2 2 _ 2 =
(t @ BTt - a8l (t a85) =0, (1I1.Cc.2.2)

are within the unit circle, i.e. iff a18? + aZBZ < 1., This is satisfied
for the conditions on the parameters defining NLAR(2), thus establishing
the existence of the model (II.C.1.1).

No marginal distribution is ascribed to solutions of the general
RCA(p) models in [Ref. 16]. It is, in fact, determined by the
independent choices of the innovation and the random coefficients.
However, by specifying the marginal distribution and the random
coefficients, in NLAR(2) the innovation is restricted more thar in the
RCA(p) model. If the Xn in (II,C.1.1) or Zn in (II.C.2.1) have a
standard Laplace marginal distribution, then all their moments are given
by (II.B.1.3). From (I1.C.1.1) or (II.C.2.1), it follows that for all
p = 1,2,...

2k

E(e 2K
n

) = 120 [1- (a8, + a8

(I1.C.2.2)

. ks . |
- z {(oz1312(k D, azez(k 1))E(e§(k Dyt > o,

cnd for this to be true it is necessary that

o B2k ‘a 2K

18] 92<1. (II.C.2.3)
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Since a, and a, are probabilities it is necessary that [, | s 1 for

i=1,2for (I1.C.2.3) to hold. If not, there exists for every @, >0

o
+
.

3
~
-

-

0
'y

and a2 > 0 an integer m, such that u1812m or azssm is greater than 1.
:Z: ‘ We have now established the necessary conditions on the
innovation {en}, and on B, and B,--namely that IBiI $1,1i=1,2--for

the existence of a unique strictly stationary solution to (II.C.2.1)

with a marginal Laplace distribution and with the random coefficients

a4
e

l‘l

given by (II.C.1.2). In the next theorem, we show that lBiI <1 for

i =1,2 is also a sufficient condition and that such an innovation

random variable €0 exists., We also give its explicit form--a convex
combination of Laplace random variables. For simplicity, the parameter
space is regarded as being described by strict inequalities for

THEOREM 1. Let {Xn} be a stationary process with standard Laplace
marginal distribution. For all n, let equations (II.C.1.1) and
(I1.C.1.2) hold with 0 < [8,] <1, 0 <o, <1 for i =1,2and

a, + cx2 < 1. Then

Ln w.D. 1-p2-p3,

e, = K, L= 1 [o,|L  wep. Py (I1.C.2.4)

b |b3|Ln w.p. Py

where {Ln} are i.i.d. standard Laplace variates; the Kn's have values in

{1, |o |o,|} and are independent of (L } and {K!, K"} for all n.

5|

- They are also independent of Xn-l ’Xn-2""' Furthermore,

2l
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,- - 2 2 _ 2 g2 2 _ n2 - w2
o p2 [(0181 + a282)b2 (a + a2)B1 82}/(b2 b3)(1 b2), (I1.C.2.5)
o
{ = C 2 g2 2 2yp2 2 2 - h2
Py = {(a, + a2) B 85 - (a By + a282)b3}/(b2 b3)(1 b3). (II.C.2.6)
[
1>b2 =Lis+ (s -4r)'"% 502 = Lis - (52 - um)V/2y 5 0, (127
2 2 3 2
3y
._:;-I: ) ) . ) ) -
N s = (1 a1)81 + (1 a2)82, and (I1.r.2.8)
:':*..'.,
- - _ 2,2
r (1 a, a2)8182- (I1.C.2.9)
Proof:
el For the NLAR(2) model specified by (II.C.1.1), (II.C.1.2) and
if% (II.C.2.4) - (II.C.2.9), let ¢X(m) and ¢£(w) be the characteristic
- functions of the {Xn} and {en} sequences. If {Xn} is stationary, then -
4
~:;:::: - - _
Ree ¢X(w) ¢€(m)[a1¢x(81w) + a2¢x(82m) + (1 a, az)}. (II.C.2.10)
J
AN Assuming a standard Laplace marginal distribution for {Xn}, the
f;: independent distribution of {en} has a characteristic function, possibly
fﬂ* improper, given by
L
< (1+620%) (1+8%0%)
o ¢ (w) = 3 S— T3 W — 3 — 73 2 .
. € (1+w?) [ a, 02)8182w + {1 a1)81 + (1 a2)82}w + 1]
%
ik (ILI.C.2.11)
S
e
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L It is convenient to factor the quadratic in w? in the
denominator of (II.C.2.11). The roots of this factor are both real and

; distinct. To see this, note that

- 2 - 212 _ —r - 22
{1 a1)B1 + (1 a2)82} 4(1 @, a2)8182

- - 2 _ (1_ 212 252
{1 0.1)61 (1 a2)62} + Ma1a28182 > 0.

The roots are also both negative, which can be seen by noting that the

= - 2 2 : s .
product r.rs 1701 u1u2)8182 is positive, but the sum P, ot or,

= -{(1-01)87 + (1—a2)85}/(1-a1-a2)8785 is negative.

Letting r, =-=1/b%2 and r_, = -1/b2%2, we can rewrite (II.C.2.11)

2 2 3’

using partial fraction decomposition to obtain
6 (w) = (1-p_-p.) () *+ p, (=) *+ D, (=2 (11.C.2.12)
€ 2 Y37 M+’ 2 1+b§w2 3 1+b§w2 : .

From (II.C.2.11)

2 2 - 2 - 2 _

b2 + b3 (1 onl)s1 + (1 a2)82 s (I1.C.2.13)
and

22 _— - 2p2 _

b3b2 (1 a, a2)8182 r. (II.C.2.14)

Comparing (11.C.2.12) and (II.C.2.11) term for term also yields

-n2 “-h2) = 2 2

p2(1 b2) + p3(1 b3) a18 Y a282 (11.C.2.1%)

and
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[ pz(j-bg)b§ + p3(1-b§)b5 = <a1+a2)sfsg. (II.C.2.16)

1)
and 8, by solving (II.C.2,13) - (II.C.2.16). From solving

Expressions for b2, bg, p2 and p3 are obtained in terms of a

a B

.
e

2’ M
(II.C.2.15) and (II.C.2.16) simultaneously, we obtain (II.C.2.5) and

s

N

(II.C.2.6). Equations for b; and b§ given in (II.C.2.7) are obtained

;f from solving (I1.C.2.13) and (II.C.2.14) simultaneously. Arbitrarily,

let b; be the larger value.

- It remains now to show that the inversion of (II.C.2.12) will,
in fact, yield a function that is a probability density and is the
mixture of densities for scaled Laplace variables. To do this, we show

- that P, and p3 can be interpreted as probabilities and that Py + p3 < 1.

To establish that P, * Py < 1, we have, after adding (II.C.2.5)

3
and (I1I.C.2.6)

2 2y 2,2
L (a,87*ay83) = (ay+a;)8785) (I1.C.2.17)
p2 p3 (1_b5)(1_b§) . LR .

- Multiplying out (1-b§)(1-b§) and using (II.C.2.13) and (II.C.2.14), we

.. have, after some rearrangement

(1-8?)(1—63)
- —n2 Yy 27 1-n2 ST 1-a2
(1 81)(1 82) + a181(1 82) + a282(1 81)

+ =1 . (I1.C.2.18)

- P, * Ps

This expression is clearly positive and less than one, from

which it follows that p2+p3<1.
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To show that p2 and p3 are probabilities, it remains to show
that they are both positive. To do this, it is shown that the
numerators and the denominators of (II.C.2.5) and (II.C.2.6) are

positive. For the denominators, this requires that 0<p? , bg <1, which

is shown by noting O<(1-b§)(1-b§)<1. From (II.C.2.17) and (II.C.2.18),

it follows that

(1-b§)(1-b§) = (1-37)(1-35) + a1s§(1-s§) + a285(1-BT) > 0.

Also,

1 - (1-b§)(1-b§) = (bg + b%) - b§b§

- 2 - e (e - 2,2
(1 a1)B1 + (1 uZ)BE (1 @, a2)8182

- -R2 - -
(1-a,)83(1-82) + (1-a,)83(1-63) + 8282 > 0.

Therefore, bé and b% are less than one, so p2 and p3 have
positive denominators.
To see that Ps and p3 have positive numerators, note that it

must be true that

(o

+a,)B2B2
1 72°7172
b2 < b = ——p——" < b2, (I1.C.2.19)
3 (a181+a282) 2
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Using (II.C.2.8) and (II.C.2.9), (II.C.2.19) is equivalent to

2

-(sz-ur)]/ < 2b - 8¢« (sz-ﬂr)1/2,

or

8% - Ur > (s-2b)?2,
or

sb - b%2 -r > 0. (I1.C.2.20)

But the lefthand side of (II.C.2.20) is

20202022
61&28182(81 32)

2 2\ 2 ]
(a,87+ay83)

which is strictly positive.

Therefore, p2 and p3 are both positive and p2+p3<1. Therefore,
p2, p3 and 1-p2-p3 can be regarded as probabilities. Therefore € has a
proper density which can be generated as the mixture of three Laplaces
with scale parameters 1, |b2| and |b3|, respectively. Q.E.D.

The general NLAR(2) model uses the four parameters to achieve a
wide range of sample path behavior. Figure II.C.2.1 illustrates four
different realizations of the NLAR(2) process. In each case, the
theoretical autocorrelations are identical with p(1) = 0.64 and
p(2) = 0.5. Also, note that each sample path was generated from the
same i.i.d. standard Laplace sequence {Ln}, such that (X1'X2) = (L1,L2).

Since this is not the steady state bivariate distribution of (Xn,X

)

n-1

the sample paths illustrated in Figure II1.C.2.1 are displayed beginning
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with x501 to avoid the initial transient behavior of the process. The
true value of each parameter is displayed above the corresponding sample
path, Figure II.C.2.2 contains the scatter plots for each sample in
Figure II.C.2.1. The sample size in each plot is 2000.

Many special cases of the NLAR(2) model could be mentioned. The
following have one or more of the parameters at their boundary value and
have valid but less complicated results for the distribution of {en} in
(II.C.2.4). 1If a, = a, = 0, then {en} is the i.i.d. sequence {Ln} and
Xn =€ - If a, = 1 then {en} is the innovation of the LAR(1) model

derived from (II.B.1.7) and (II.B.1.8). If [, = [B,[ =1 and

a, + as < 1 then each € is distributed as a scaled Laplace random

variable, /—T:;T:E; L . These models are called the TLAR(2) models,
which are easily extendable to higher-order autoregressions, as
discussed in Section II.E, If a, < 1 and ay = 0 or B, = 0, then {en} is
the innovation of the new first-order autoregressive model NLAR(1).

This model is the subject of Section II.D.

3. Autocorrelation Structure

In this section, it is shown that the autocorrelations

p(R) = Corr(Xn, X ), L =0,+1,+2,... of the NLAR(2) model satisfy the

n-%

Yule-Walker type difference equations; thus the second moment dependency
aspects are indistinguishable in form from those for the AR(2) process.
We also compare the admissible regions of an AR(2) with (i) an NLAR(2)
with U4 parameters and (ii) an NLAR(2) with only two parameters.

From the independence of {Kn} and {Ké, Kg}, and (II.C.1.1),

(II.C.1.2) and (II.C.2.4), we see that E(Ka) = a,, E(Kg) = a, and

1 2
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E(en) = E(Kn)E(Ln) = 0. Multiplying (II.C.1.1) on both sides by X .q W€

-1

have for £ 2 1, E(X. X ) = a1B1E(X X ) + azBZE(X

nn-4% n-1"n-¢ ).

n-2xn-l
Dividing by Var(Xn) we have p(-1) = a181p(2 - 1) + azBZp(l - 2), since

e p(=2) = p(L). Substituting aiBi =a fori=1,2and p(0) = 1, we have

i

p(1) = a,6 + a20(1)

1

p(2) = a1p(1) + a (I1.C.3.1)

2'
o, which are the same equations as those which occur for the AR(2) process.

Since |8,] s 1 for i =1,2and a, + ay S 1 in NLAR(2), the usual
triangular admissible region for AR(2) given in Box and Jenkins

[Ref. 23: p. 61] shrinks to the interior of a diamond-shaped area in

- e
e de Sauly o

AR

= = i B < i 3
(a; = a8y, a5 = a,B,) coordinates: |a | + |a,| s 1. (See Figures

.
y

vt

IT.C.3.1a and 1b)., In (p(1), p(2)) coordinates the equation
p(1)2%2 = (1 + p(2))/2 defining allowable combinations of p(1) and p(2) in
AR(2) also changes. For NLAR(2), the space in (p(1), p(2)) coordinates
becomes a triangular region bounded below by [0(1)[ = %{1 + p(2)}. (See
S Figures II.C.3.2a and 2b).

The reduction in allowable parameter or correlation combinations
for NLAR(?2) over the AR(2) model is not large. This encouraged us to
o consider a 2-parameter NLAR(2) model by specifying a; = Bf, for i = 1,2,
so that a.l = B;. The parameter space in (a1,a2) coordinates becomes the
ff’ symmetric region bounded by the curves B§ =+ (1 - B;)3/2 (see Figure
II.C.3.1¢). 1In (81, 62) coordinates the admissible region of the two

parameter model is bounded by the unit circle B? 4+ B; = 1. Using only

n 46
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two parameters leads to the admissible region in Figure II.C.3.2c for
(p(1), p(2)) space. The (p(1), p(2)) space was obtained by transforming

the lines BS =a, =c¢, -1 S$csS1, in Figure II.C.3.1c to p(2) =

2
3/2
(1-a2)p(1)’+a2. where |[p(1)] § a1/(1—a2) = B?/(T-BE) and 85 = (1-6%)

if a, 2 0 and 83 = -(1-8;)3/2

> if a, < 0.

2

All the plots in Fig. II.C.3.1 were generated from a grid of
equally spaced values of a, and a2. In Fig, II.C.3.1a the points
satisfy the Yule-Walker equations (5.1). 1In Figs. II.C.3.1b and ic, the
points also satisfy the conditions of Theorem 1. 1In Fig. II.C.3.2 the
feasible combinations of p(1) and p(2) are plotted for those values of

a, and a2 from Fig. II.C.3.1 using the Yule-Walker equations (5.1).

4, Directional Moments and Partial Time Reversibility

In the last section, we demonstrated that the second moment
dependency aspects of the NLAR(2) model were indistinguishable in form
from those of the ordinary AR(2) model. Also, it is well known that if
the linear autoregressive model is not Gaussian, then the process is not
completely determined by the first and second moments. Thus in model
identification it becomes necessary to examine third order moments to

further identify the process. Special third order moments E(X; X Yy

n+4

for all %, are known as directional moments. If the directional moments
for all & are equal, which is necessary for a process to be fully time
reversible, we say the process is partially time reversible in the sense

of directional moments.

A process is fully time reversible (Lawrance [Ref. 27]) if the

joint distribution of xn, X erey X , 18 the same as that for Xn

n+1’ n+r +r

X ...,Xn for all r and for all n. Since LAR(1), a special case of

n+r-1"'
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NLAR(2), is not fully time reversible, NLAR(2) is in general not time
reversible.

In this section we show by induction arguments that all the
third order moments of NLAR(2) are the same as those for Gaussian AR(2)
model; i.e. E(xixjxk) =0 for i, j, k. This implies particularly that
the directional moments of NLAR(2) are equal and therefore that NLAR(2)
is always partially time reversible.

In Section II.B, we found that E(X;) =0 for all i since Xi is

marginally Standard Laplace. It is easy to establish the following two

equations:
2 = 2 .
E(xnxn_1) = 82a2E(Xan_1), (II.C.4.1)
2 = 2 - 2
E(ann-1) {(Bzaz)/(1 28182a1a2)} E(an n-1)' (II.C.4.2)

Solving (II.C.4.1) and (II.C.4.2), simultaneously yields E(ang_l) =

2 =
E(X2X__,) = 0.

Now, using separate induction arguments and the stationarity

assumption, we establish that E(ang_ ) = 0 for all & 2 1, and

)

2 = >
E(X2X__ ) =0 for all k z 1.

The proof of E(ang_ ) = 0 is straightforward.

L

To prove E(X;Xn ) = 0, we first show that the expectation of

-k
special third order moments of the form ann—1X1—k for k 2 2 is zero.
i = 2 = i < -
Define b E(xnxn—1xn-k) and assume E(ann—j) 0, j s k 1. From

(II.C.1.1),
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E(X X X ) = a181E(X2X

He ® n'n-1"n-k n n-(k-1)) * aZBZE(X X

n n-1xn-(k—1))

k-1
=aBou g ... = (a282) My (II.C.4.3)
Now from (II.C.4.1) and (II.C.4.2), we have

M E(X_X ) aZBZE(XnX

n¥a-1 ) = 0. Therefore u_ = 0.

n-1

We now proceed to show that E(xixjxk) =0 for all i, j, k.
Without loss of generality let i < j < k so that k = 1 + n, j = 1 + m

and n > m. Therefore by stationarity E(X, XJX ) = E(X1X1+mxl+n) =

E(X X, ). Fixing m so that 0 < m < n we use induction on n.

i-(n- m) i-n

Let n = 2, implying m = 1. The first step in the induction follows from

= = <

E(Xixi~1xi—2) My 0. Next assume that for m < n s K,
E(X X4 ~(n- m) ;- n) = 0. Now we show that E(X, X - (K+1-m) {- (K+1)) = 0.
Using (II.C.1.1), we write
BOGX - (kei=m) ¥ i- (ke 1)) T 2181 B X (et -m) K- (ke

%28 2B X5 %5 (k1 -my¥i- (k1))

* R X (ker-m)Xi- (ke )
Now E(e, X, “(K+1-m) 1—(K+1)) E(e, JE(X, —(K+1-m) 1-(K+1)) = 0 and
E(Xi—1xi-(K+1—m)Xi—(K+1)) = E(Xixi-(K-m)Xi-K) = 0 by stationarity and

the assumption. Likewise E(X,6 ,X

P-(ke1-m) Y- (ko1
E(X Xy —1(K-1)-m} 1—(K 1)) = 0. This completes the induction.
An immediate result from the argument about third moments is

that Z =X - X for {X } of the NLAR(2) is not skewed.
n n n-1 n
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The residual analysis in [Ref. 6] and [Ref. 22] using cross

T correlations between linear autoregressive residuals Rn = Xn - a1Xn-1 -

a. X

X5 and their squares R;, does not shed any new light on the

directionality/reversibility in the NLAR(2) model or help in identifying
the appropriateness of the Laplacian model. This is because all third

)

moments have zero expectation, Thus, we see that E(R;Rn+2

E(RnR2 ) = 0 for all %.

n+4
Note that the basis for the residual analysis using the {Rq}
process is that this process s uncorrelated but not necessarily

independent. The moment results show that the Rn's have zero skewness.

In fact, it is easy to show that the distribution of Rn is the same as

: the distribution of -Rn. Thus the Rn's are symmetric although they
will, of course, not have Laplacian distributions.
In Chapter IV of this thesis, a residual analysis based on i
Efﬁ certain fourth-order moments is presented.
.%3% D. THE NEW LAPLACE FIRST-ORDER AUTOREGRESSIVE MODEL, NLAR(1)
%;; 1. Introduction
;ﬁ The new Laplace first-order autoregressive model is another
“j%: special case of the NLARMA(p,q) model when g=0 and p=1. This is, of
N
?ﬁi course, a special case of the NLAR(2) model, where either a, and/or 82
S are zero in (II.C.1.1). Examples of the different sample path behavior
obtainable from the NLAR(1) Process are given in Figure II.D.1.1. Note
i n that each sample has the same value of lag-1 serial correlation, i.e.
Eijj p(1) = Corr(Xn,Xn_1). In Figure II.D.1.2 are the corresponding scatter
RS
éf: plots for the samples in Figure II.D.1.1. In the scatter plot labeled,
ng "a1=1", the distinctive regression line, Xn = PX is clearly visible
- 52
X




LA Sl ) ﬁ““‘"“““"““’"‘*-r-'T

9 =(1)0 ‘sy3jed sydwes

3ru1

______ :_ v___ ___ :,_: .,_.__,_, .

J='gr9 ~to

il
8— o

__._1 ___._..___,_________,= ! k_, _&

4~

12°2

vivg

vy

Iny

_ _ ‘ | TR

;;142;:4 _ __i

1L ~'ge='s

(1) ‘SHIVd ITdNVS

P (T)AYIN

[

t

*1°7°d°II sanbtd

6='8'1L ='®

my

________

SRl

vivg

19 ='g 1='0

((1)YVIN

x

1

ek ke i m R

NN

-

2

53

.
Ay

ot

.
. WS, v

Y




gt

CaliCal

il

A" s aied

h aAREs

AL I A A R g i

v

p9 =(T)Jd !s30Td 9330S F(TYAVYIN

v ° v-
L o T T L) T T T
1:
do =
4-
i='glyy =t
0001 T 4wy X 0001k "X
o s [ - ol [ 4 [ - 8-
Lo ¥ ' T T T o L} N T T T ¥ ¥ T Ll T ¥
g
&

e='gg=to 1=‘ge='

9" = (1) ‘S101d 43LLVOS

’-

*Z°1°d°1I sanb1d

[:I%d

ge='giL="'e

0001" “2'4=u “x

o=

=y

(1)YVIN

vostai=te

S
'S

-y

vy

54

J

s b

"

“
L Al iy

.

AR,

Y
Y

e o e

2 Lo

LA ot e

.

I N

-

N

y

A )l o st

. -
A




Nl B BCit B SR I Ao e S SF a2 0 ol Sl L g Rt B AR B i C v g e it il arn GO panh at i St A el “ i ™ i aai ek e Al o DO A O AIC R A A |
L T R R T I TR et . A AR A

\ SR

L .

,I‘I A'

R
Vo4 a
v

for the LAR(1) process. This is produced as explained in Section II.B,

fﬂ: because the innovation, sn’ can be zero with non=zero probability.

The two=-parameter autoregressive model generates an {Xn}

sequence which satisfies

- '
X = KIBX _, +e€, (II1.D.1.1)

= t
KnB1xn-1 * KnLn

where
1 W.p. a, 1 w.p. 1-p2
Ké = ; Kn = (II.D.1.2)
0  w.p. 1=a, V 1=a [8,|L, w.p. P,
and
= 2 - - 2
p, = a,83/{1 (1=a,)83}. (II.D.1.3)

Also, {Kﬁ}, {Kn}, {Ln} are i.i.d. sequences independent of each other

and independent of Xn-1’ xn~2""'

From (II.D.1.2) and (II.D.1.3), we see that the inversion of the

-1/2 1

characteristic function for e , letting \ = (1=a,) (|81|)- , gives

for O<u1<1

(1-p2)

fe(x)=—5—e”+

Ao,
—53 e AIXI, (II.D.1.4)

which is a convex mixture of Laplace densities, This result also

follows directly from Section II.C.3, since the NLAR(1) model is an
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NLAR(2) model. Likewise, the correlation structure and partial time
reversibility in the sense of directional moments are the corresponding

results for the NLAR(2) model with a2=0 or 82-0. That is

Corr(xn,xn_k) = (aB)lkl for all k = 0, #1, +2, ... (II.D.1.5)
and

2 = 2 = =
E(ann+k) E(Xan+k) 0 for all k = 0, #1, 2. (II.D.1.6)

We can rewrite (II.D.1.1) as

n j J=1
X, =e, + 1 8 Kfmi) Epmy (II1.D.1.7)
J=1 i=0

From (II.D.1.1), it is clear that Xn depends only on Xn_1 and €n* From

(II.D.1.7), Wwe see that X is independent of ¢ for all k20. Hence

n=1 n+k

{Xn} is a first=order Markov process and starting XO with a standard

Laplace distribution makes {Xn} stationary.

The remainder of this section is devoted to specific results for
the NLAR(1) process which have not been shown in the more general
NLAR(2) model. The extension of these results to the NLAR(2) process

would require the joint distribution of {X_,X }, which has not

n n—1'

been derived. The conditional density of Xn given Xn_1 is derived, as

well as an expression for the joint distribution of the Xn. The
distribution for the differences Zn=Xn—Xn_1 is also derived. Parameter

estimation is discussed in the context of moment estimators and least

s % sl
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squares using the linearized residual. The problems with finding the

maximum likelihood estimators of a, and B1 are also addressed.

1

2. Conditional Density and the Joint Density of (Xn,...,X )

1

To find the conditional density of xn, given xn we use

‘1’

). We have for a,<1,

(II1.D.1.1) = (II.D.1.4) to evaluate P(X <x_|X :

n=<1
which eliminates the LAR(1) process,

= 1]
P(Xn<xnlxn‘1) P(K!B, X + e <x |X __.)

n 1 n=1 n "n'"n<l

= a1P(en<x =8

n 1xn‘1) + (1‘a1)P(en<xn)

xn‘81xn-=1 xn
= a, fséx)dx + (1=a,) I fegx)dx. (II.D.2.1)

Differentiating (II.D.2.1) with respect to X yields the following

expression for a,<1,

1

£y Ix (xn|xn‘1) = f o (xp=Bx )+ (=a)f _ (x ). (11.0.2.2)

n' n=1 n n

Examples of (II.D.2.2) for a fixed X, .q and fixed Y = a

given in Figure II.D.2.1.

Now we can write the joint density f

X X (Xn. xn‘1) as the

n n=1

i

Lt
)

(x ). In fact, the n=dimensional

product fX n=1

n

(xnlxn‘1)fx
n=1 n=1

g
s

| X

=

2 4
“

prppapTpp
R AR

distribution of Xn,...,X is obtained using this product recursively to

1

4
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obtain the density

fx ...x, (Xpreeosxy)) = £y

n : X (kpl%paq) £

(x__.|x._,) ...
n=1 Xpet Xqep "n=11"0=2

fx2|x1(x2|x1) fxl(x1)- (II.D.2.4)

3. Distribution of Differences and P(X _,>X )
We now consider the distribution of the difference Zn = Xnﬁxn‘1'

Using (1I.D.1.1) = (II.D.1.4) and the fact that € is a convex mixture

of Laplacian random variables, we used partial fraction decomposition to
invert the characteristic function of Zn to obtain the following

expression for the density:

£, (y) = exp{‘]yl/(1‘81)}
n

a1(1‘81)l { Py ) (1‘p2) J
2 {(1‘81)2‘02} 81(2‘81)

1 (1=

o7 = (1-6,)7  1=¢? |

a

+ exp(‘|y|/o)(op2/2) {

(1‘a1)p2 (1‘a1)(1‘p2) a1(1‘P2)‘

+ lexp(‘lyl) { = + +
2 1<g 2 81(2‘61)

+ (1=p,) (1=a,) |y |exp(=|y[)/4, (II.D.3.1)

where g2 = (1—a1)8?.
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'?f; One immediate result is that fz (y) is symmetric about zero and
e
- n

therefore, P(Zn<0) = P(Zn>0) = 1/2. This demonstrates one additional
e feature of the partial time reversibility of the NLAR(1) models; i.e.,

-

}i‘ probabilities of a run down (xn>xn 1) and a run up (xn<xn‘1) are the

same. To evaluate probabilities of higher order runs would require the

¥

joint distribution of the sequence {Zn}. This result has not been

]
PR T }

obtained for the NLAR(2) model.

4, Estimation of Serial Correlation

. a. Introduction

The purpose of this section is to present estimators of the

r
i
[t

two parameters a, and 31 whose product is the correlation coefficient in

1

-y
[}

e

the NLAR(1) models. We assume throughout this section, unless otherwise
stated, that {Xn} has a standard Laplace (u=0, A=1) marginal
distribution. Estimation of u and A for models that have marginal
sz Laplace distributions are discussed in Chapter III. We also only
;} consider the random coefficient models of the NLAR(1) process, i.e. a<1,
). thus eliminating the LAR(1) model. As was shown in the introduction to

:3; this chapter, for a,=1, B, can pe estimated very efficiently, thus

1 1

;}ﬁf eliminating the need for further discussion.
. The method of moments is used first to find an estimator of

e Y = a,8

o 1 The joint moment estimators of a

1° 1 and 81 are calculated from

fourth=order moments. These estimators are used later in an iterative

procedure to obtain the joint least squares estimators of a, and 81.

1

A least squares estimation procedure is defined for the

NLAR(1) models using the usual linear residual Rn = Xn‘a B, X

o 60




Minimizing the sum of R; leads to the usual estimator of Y as given in
standard texts on time series. 1In order to estimate a, and B1
individually, we minimize the square of a particular function of Rn with

respect to a, and 81.

1

In the last part of this section, the problems of maximum
likelihood estimation in the NLAR(1) process are discussed. Although no
results are presented for the general model, the maximum likelihood
estimator of the correlation coefficient in the TLAR(1) model is given.

b. Method of Moments

(1) Estimation of Y by Second=Order Moments. Since X, is

* assumed to have a standard Laplace distribution with E:(Xn) = 0 and
Var(Xn) = 2, an immediately obvious choice for estimating

9 Y = Corr(xn,xn‘1) is the following product moment:

1 n
= 1 XX,
- 2 j=p i“i=1

- —E—— (II.D.4.1)

Taking the expectation of Y and using (II.D.1.1), we have

n n
1 1
STy (L, B Nier) T ammey L) BBy T ey e (D)

E(Y) =

so that the estimator is unbiased.

(2) Joint Estimation of a1and B1by Fourth=Order Moments.

The expectation of fourth<order moments can be calculated using

(II1.D.1.1) and the fact that {Xn} is a stationary process. For example
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E(X{X . q) = 20,8, {1 + (2‘a1)sf} , (II.D.4.3)
E(XIXI_,) = B(1+5a,87) , (II.D.4.4)
E(X;X]_,) = 24a,8, , (II.D.4.5) .
E(XPX, _1X;.5) = Yo, B, {1+2a,82+3a, (2=a,) 87}, (I1.D.4.6)

Solving for a, and 81 in different pairs of these

1
equations gives the estimators based on fourth<order moments. It is to
our advantage to use the expressions with the lower order moments where
possible. Therefore, using E(szi‘l) and E(Xixi‘1) instead of

E(Xixi‘1), we solve for the following expressions for the joint moment

estimators of a1 and B1

n
5 1 x.x._ }2
j=p 1 1=1
&, = : (I1.D.4.7)
1 n
(n<1)} Y XIx3_, = u(n‘1)] 3
i=2
n
I (xix2_) = 4(n=1)
- i=2
B] = n . (11.D.4.8)
10 Z X. X, _
j=p 17i<1

From the scatter plot analyses in Figures II.D.4.1 and
I1.D.4.2, we see an example of the behavior of this pair of estimators
when a, = B, = .8 in the NLAR(1) model. Both scatter plots contain 500

pairs (a1,8 ) derived first from samples of size 250 and then from

B
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samples of size 2500. It is clear from the equations (II.D.4.7) and

(I1.D.4.8) that ; = u181. The hyperbola can be seen in both scatter
plots. Both parts are visible for sample size of 250. However, for
pairs derived from samples of size 2500, only the part in the first
quadrant is visible.

From the Normal probability plots in Figure II.D.4.3,
there is little evidence of non<Normality for ; = ;1§1 for N = 250, and
less for the estimator derived from samples of size 2500. However,

~

individual estimators a, and B1 look far less Normal for both sets of
sample sizes,.
¢. Least Squares Estimation in the NLAR(1) Process

(1) The Linear Residual. The properties of the linear

residual are developed for use in deriving the least squares estimators

of Y = a181 and for a, and 81 jointly. We begin by rewriting (II.D.1.1)

1
in the RCA(1) form as given in (II.C.2.1). We have

X =¢,8.X

| B
no= 48X oy B (Kpma )X Ly v e (II.D.4.9)

n=<1 n

From this expression, there are clearly two ways to write down the

linear residual, Rn' The usual one from linear theory is, of course

R =X =<a,8.X . (II.D.4.10)

- e
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However, a particularly useful way of looking at it is from

= | P
R, = B,(Ki=a )X _.+e . (II.D.4.11)
It is from (II.D.4.11) that we see explicitly how the i.i.d. innovation,
{en}, and the coefficient {Ké‘a1} processes impact on the linear
residual.

Let 3:; be the g¢g<algebra generated by [{(K&‘a Y,e 13

1 k
k=1,...,n<1]. Intuitively, 5:_, , represents all the information
about the process up to time n=1. Conditioning on JZZI , we have the

following two useful properties of Rn as noted by Nicholls and Quinn

[Ref. 16: p. 42].

~
[}
o

ER | ey (II.D.4.12)

BRI Fn., )

BiVar(K1)x7 . + Var(e ) (II.D.4.13)

- 2,2 - 2
ay(1=a, ) 8yxr , + 2(1=a,87) (II.D.4.14)

These results follow because Xn‘ is a function only of

1

the process through (n=<1) and (Ké‘a1) and €, are both independent of it.

(2) The Least Squares Estimator of Y = a,B Using Rn from

171°

- (II.D.4.10) and a given sample from {Xn}, we obtain the least squares
. n

!? estimator by minimizing the sum Z R; with respect to the product a181
[ i=2

3

E which is now called Y. We have

¥ 67
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A LA ()

n
. 1§2xixi‘1
Y = (II.D.4.15)
2
1zzxi‘1

which, in fact, is the usual expression for the estimation of serial
correlation in linear AR(1) models as given, for example, in Chatfield
[Ref. 31: p. 66].

Since the NLAR(1) process is an RCA(1) process of
Nicholls and Quinn, it follows from their theorem [Ref. 16: p. 4i4] that
Ny 1

Y is strongly consistent, asymptotically unbiased and (Y=Y) has an
v N

asymptotic Normal distribution. The asymptotic variance, from the same

results of Nicholls and Quinn, is

02 = 1 + 5ajB; - 6(a18 )2, (II.D.4.16)
Y 1

Figures II.D.4.4<I1.D.4,.7 contain the boxplot analysis

of SIMTBED [Ref. 15] output for selected choices of a, and B1 in the

1

simulation of the least squares estimator of the product 3181 in the
NLAR(1) processes. Note that although the estimated asymptotic mean is
the true value, Y = a181 = .64, for each of the four sets of the
parameters, the estimated asymptotic variance of the estimator of

B8 = Y is different for each of the four different sets of

%y Py

1

parameters. The simulation results reflect the asymptotic theoretical

results for the NLAR(1) processes as given above.
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:}* An analogous result is given in Section III.E.U4, where
fl% the theory of least squares is derived for the Beta<Laplace AR(1) model.
-\.
{- (3) The Joint Least Squares Estimation for a, and 81. It
- T n

{ﬁ{ is not possible to minimize Z R; with respect to a, and 81 individ=
o f=2
b < ually. However, a technique from Nicholls and Quinn [Ref. 16: p. 43],
- which uses the result in (II.D.4.13) is applicable. As was pointed out
B earlier in Section II.C.2, by assuming nothing about the particular
o marginal distribution, Nicholls and Quinn were free to treat the
{“; variances, o; and aé,, as completely independent parameters subject only
.-

S to the constraint that the marginal distribution of {Xn}, whatever it
™ is, has a positive variance. Then, given (II.D.4.13), it was possible

~ -

to estimate o; and oé, by minimizing the sum of squares ) S; where
i=2
3 4 n2 - 52 = 2 Y2

- Sn Rn o GX'Xnﬂ’ (II.D.4.17)
k- and R? = (X =YX _,)% and ¥ is from (II.D.4.15). They derive the
.{ properties of the trivariate distribution of the estimator of
s (Y, 62, of,).

;ﬂ Since o; and oé, are related parametrically in @, and
ﬁf 81, the results in [Ref. 16] concerning the variances do not apply in
'j; the NLAR(1) process. However, we can form from (II.D.4.13) and
xg (II.D.4.10) an analogous expression for
o 73
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= 2 = 2 - 2 - - 2
S, = R: = a,B2(1=a X2, = 2(1<a 82), (II.D.4.18)

where the product @8, in Rn is not replaced by Y from (II.D.4.15).

In terms of a sample from {Xn}, we define the joint

least squares estimators of a, and 81 to be those values a, and B1 that

1

minimize

n
) {(xi‘a18

)2 = a1(1‘a])82x? - 2(1‘a18])}2, (I1.D.4.19)
i=2

1¥i=1 1Xi=1

where (II.D.4.19) is the sum of the squares of Sn given in (II.D.4,18).
Now it is clear that (II.D.4.19) is a highly nonlinear expression in two

unknowns, a, and 61. A given numerical technique could converge to a

1

local extremum, a saddle point, or diverge depending on, among other

things, the starting values for estimating «, and 81.

1

Constraining the nonlinear optimization problem given
by (II.D.4.19) to the rectangle within which the NLAR(1) process is
defined=<0 g a, £ 1 and =1 g 81 £ 1==eliminates the divergence problem,
but clouds the estimation issue regarding the boundary models LAR(1) and
TLAR(1). We try an unconstrained approach described below.

(4) An Unconstrained Nonlinear Optimization of (II.D.4.19).

It is easy, but tedious, to write the normal equations from (II.D.4.19).

One critical point is at a, = 81 = 0. After factoring a, from the one

equation and 81 from the second, several iterations of the Newton=<

Raphson method (see, for example, Gerald [Ref. 28: pp. 122<128]) can be -

performed to find other critical points. The Newton<Raphson method uses
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a second<order Taylor series approximation to solve the non<linear
system by a set of linear Jacobian equations. However, one needs to
calculate the four second partial derivatives from (II.D.4.19) and to
have a good starting point on the surface.

The IMSL routine ZSPOW solves systems of non=<linear
equations for one root using modified Newton methods. This routine was

-~

used to solve the unconstrained problem of finding a, and 81 from sets

1
of data from simulated NLAR(1) processes. The routine was very senstive
to starting values and did not always converge even when the sample size

was as large as 2500. It also did not perform well when the true

correlation coefficient, Y = a1B1, was small for any of the simulated
NLAR(1) processes with the same autocorrelation function, Y|kl. This
problem is highlighted by the fact that (II.D.4.19) is constant along

the line a, = 0 and the line B1 = 0.

As an illustration of the performance of the routine,
500 sets of sample sizes 250 and 2500, respectively, were generated from

the NLAR(1) process with @ = 81 = .8, The scatter plot analyses in
Figures II.D.4.8 and II.D.4.9 show how the estimators a, and 81

determined by ZSPOW are related. Especially for the samples of size
250, there is the same pattern of the hyperbola as seen in the moment

estimators of a, and B1 given in Section II.D.4.b.(2). From the

accompanying tables, it is clear that the variance of the marginal

distributions for each estimator a1 and B1 is decreasing with increased

sample size. The Normal plots of the empirical marginal cumulative

distribution functions for a, and for 81 appear very non<Normal even
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from estimators derived from samples of 2500. On the other hand, the

Normal plots of ; = a181 indicate that the distribution is converging to
a Normal distribution as required by theoretical results of the
previous subsection. (See Figure II.D.4.10).

It is convenient, at this point, to summarize the

results on the moment and least squares estimation of Y = o,8, and

171

(a1.81) in the NLAR(1) processes.

In the estimation of Y, only second<order product
moments are required for both methods. From the Normal probability
plots in Figures II.D.4.3 and II.D.4.10, it appears that both estimators
of Y are converging to Normal distributions. Although the moment
estimator of Y is unbiased (the least squares estimator is
asymptotically unbiased), the variance of the moment estimator of Y is
considerably larger than that of the least squares estimator of Y.

The estimation of a, and 81 requires fourth=order

product moments for both methods. The variance of the moment estimators

of a

1 and 61 are too large, even for samples of size 2500 to be useful

in distinguishing between NLAR(1) processes. The least squares

estimators of a, and B] have smaller variances than the corresponding

]

moment estimators and could be useful in distinguishing between NLAR(1)
processes. However, as pointed out above, the numerical routine to find
the critical points does not always converge for a given starting value

of a

1 and 81. The conclusion is that neither method of estimating a

1

and B1 is very satisfactory.
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(5) The Median (Xi/Xi‘1) Estimator of Y = a,B,. The median

of (xi/xi‘1) was seen to be extremely efficient in the LAR(1) process.
It alsc makes sense in the context of maximum likelihood estimation in
LAR(1). This is discussed in the next section.

Simulation results confirm the conjecture that the
median (xi/xi‘1) is not a robust estimator of Y for departures from the
LAR(1) process. 1In fact, from the boxplots in Figures II.D.4.11 -
II.D.4.14 of SIMTBED output for four NLAR(1) processes, the estimators
seem to become more biased as B1 approaches one--corresponding to the
other boundary process, TLAR(1). Even for the small size of the
simulations, the standard deviation of the mean is small. For the three

non-LAR(1) models, the asymptotic estimates of the mean of Y given in

the data are each significantly different from the theoretical value of.

Y = .64,
d. Method of Maximum Likelihood

(1) Introduction. The logarithm of the likelihood

function, L(a1,81), is obtained by taking the natural logarithm of the
n-dimensional joint density given in (II.D.2.4) and treating it as a

function of a, and 81 for a given realization of length n from {Xn}. We
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have

n
L(a,,8,) = -n(in2) - [x,] + 122 tnla, (1-p,lexp{-{x,-8,x; [}

+ (1-a1)(1-p2)exp{-|xi[} + u1p2Aexp{—A|xi—B1xi_1|}

+ (1-a)pyrexp{-A|x, |11, (II.D.4.20)

1
where p, was given in (II.D.13) and A = /(1—a1)8§ .

‘Maximizing (II.D.4.20) in the general NLAR(1) model is
not accomplished here for two reasons. First, L(a1,B1) is not

differentiable with respect to 31 at any of the n values 81 = xi/xi_1

for i = 1,...,n, because of the terms |xi-81xi_1|. A bivariate search

routine that does not use derivatives is needed.

Second, L(a1,81) is not defined along the line a, = 1

at any of 0 £ k £ n values of 81 such that -1 < By = xi/xi_1 < 1. To

see this, examine the third term of the natural logarithm in

(I1.D.4.20). We have replacing A for all i = 2,...,n

Py =1 8yxi |

_— exp{—m———} . (II.D.4.21)
/(1-a1)s§ /(1—a1)8§

Because of the presence of the exponential term in (II.D.4.21), the

limit as «, approaches one is zero, so long as B1 ® xi/xi_ The limit

i 1°

does not exist on the set B = {8,|8, = x /x i=2,...,n}k

i" -1
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It is worth noting that for a, = 1, corresponding to

1
the LAR(1) model, and except on the set B, (II.D.4.20), can be written

as ‘
z
L(1,8,) = -n(2n2) - [x,| + (n=1)2n(1~8})
n
- '2 |x;-8,x;, |, 8, ¢B. (I11.D.4.22)
i=2
Now 1n(1-8%) is maximized at B, = 0 and the optimal value for
n

)) |xi-81xi_1| is the least absolute deviation (LAD) estimator of B,
i=2

which is the weighted median of (xi/xi_1) where the weights are X1 for

i=2,...,n. Thus, if after a large number of observations from {Xn} no

repeats of xi/xi_ are observed, then there will be little difference

1

between a particular LAR(1) model and the completely random model of

i.i.d. Laplace variables. 1In this case, for any 81 in a small deletgg

neighborhood around g, = med(xi/xi_ ), (II.D.4.22) will be large because

1

| will be optimized.

n
—-p2 -
both &n(1-8%) and .21|xi BX,

1=

(2) The Maximum Likelihood Estimator of a, in the TLAR(1)

Processes. In this section, the likelihood function for the TLAR(1)
process is described. The maximum likelihood estimator is found using a
numerical iteration scheme. The properties of the estimator are
investigated and compared to the least squares estimator using

simulation.
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For the TLAR(1) models (B1 =1 or By = -1), (II.D.4.20)

can be written as a one-dimensional function of the a variable a. We

have
n a =| v, |
i
L(a) = -n(fn2) - |x,| + ] 2n expE %
i=2 /1-a1 /1-a1
=%, |
+ /1-a1 exp—————<1, (II.D.4.23)
1-a
1
where
X{ T Xy az 0,
v, = (II.D.4.24)
i
X, + X, a < 0,
i i-1
-1 <a <1 and a, = |af.

Now L(a) is continuous everywhere in the open interval

(-1,+1) and differentiable everywhere except at a = 0. The expressions

dL(a) d?L(a)
for da and FPL

are lengthy and cumbersome to use; hence are not
given here,.

Examples of the likelihood curve are given in Figures
II.D.4.,15 - I1.D.4.18. Each curve was generated from a sample of 100

from a simulated TLAR(1) r~-ocess with the stated a, and 81. It is easy

1

to see the non-differentiable point at zero and how flat the curve is.

To see that there is a maximum (annotated with x on the figure) in these
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?fg curves, the second part of each figure focuses on the function near the
Eiz true value of a,.
(?fi The IMSL routine, ZXLSF, a one-dimensional search
}}% routine was used to find the value of a that maximized (II.D.4.23). The
E? starting value a was the least squares estimator of serial correlation
o given by (II.D.4.15). .
i;i Using 500 samples of sizes 50 and 500, respectively,
i}? from simulated TLAR(1) processes with Y = .64, the scatter plot analyses
> in Figures II.D.4.19 and II.D.4.20 were completed. The least squares
}, estimator and maximum likelihood estimator appear to be correlated.
,i;? From the accompanying tables, the maximum likelihood estimator appears
;ﬁ to have a smaller variance and bias than the least squares estimator.
;" Analysis of the boxplots from a SIMTBED comparison of the least squares
- estimator and the maximum likelihoood estimator reflect the same results
(see Figures (II.D.4.21 - II.D.4.22). )
- From the Normal plots given in Figure II.D.4.23, both
;55 the least squares and the maximum likelihood estimator appear to be
j coverging to a Normal distribution. There are three or four outliers in
E} the tail out of 500 points.
f}f E. OTHER CASES OF THE NLARMA(p,q) MODEL
if; 1. Introduction
';EE A primary advantage of the NLARMA(p,q) model is the ease with
ﬂi; which the basic framework can be altered to cover a variety of different
‘x} dependency structures. The NLAR(2) and NLAR(1) processes have been
Si: examined closely in the previous sections of this chapter. At this -
o
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time, the moving average first-order model, NLMA(1), and the mixed
model, NLARMA(1,1), are briefly considered. The correlation structure
and parameter space are discussed for each model.

The TLAR(1) model for which the maximum likelihood estimation
was completed, can be easily extended. As the final part of this
section, we present the pth-order autoregressive processes for arbitrary
p 2 2. The conditions for existence and uniqueness, the correlation
structure and likelihood function are given. The maximum likelihood
estimation scheme for the p parameters is also discussed.

2. A Backwards MA(1) Model, NLMA(1)

a. Correlation Structure of the NLMA(1) Process
From (II.D.1.1), we see that Xn is the random coefficient
sum of independent variables each of which have a marginal Laplace

distribution. Therefore, we can replace Xn by another Laplace

-1

variable. If it is independent of Ln and has a standard Laplace
marginal distribution, then by the construction, Xn will still have a
standard Laplace marginal distribution.

If we replace Xn in fact, by Ln in (II.D.1.1), we

_1’

obtain the following expression for Xn

=1

- 1]
X, = KB,L . +KL , (II.E.2.1)

where {Ka} and {Ln} are as given in (II.D.1.2) and {Kn} is the

corresponding two-valued discrete variable as given in (II.C.2.4) for

the NLAR(2) model.

ALV 2N N RGN

Y|
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Since xn-k is by construction in (II.E.2.1) independent of

Xn for |k| 2 2, we see that the model has the cut off property of a
linear MA(1) model. The maximum range of correlations in any MA(1) is
less than or equal to |1/2|, (Fuller [Ref. 29: p. 62]). This range is
achieved by the linear MA(1) models. Some of the random coefficient
MA(1) models have been shown to have a maximum range for the
Corr(xn,xn_1) to be strictly less than one-half (see Hugus [Ref. 30]).
Using (II.E.2.1) recursively, we derive the serial

correlation in NLMA(1) as

) Cov(X »X _4)
Var(xn)

Corr(xn,xn_

1

]
E{(Kn81Ln-1+KnLn)xn-1}

2 ?

o B E(L X )

n-1
= 2 'y
@8,
- \J
2 E{Ln-1(Kn-181xn-2*Kn-1Ln-1)}’
= a,B,E(K__). (II.E.2.2)

Substituting in the values of the i.i.d. sequence {Kn} with the

corresponding probabilities p., 1-p, from (II.D.1.3) we have
2 2
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Corr(X X _,

) = a181{(1-p2) + /(1-a1)8f pz}

1-6: + a187¢(1—a1)8$

— . (II.E.2.3)
1 1 - (1 a1)87

B

Sa1

Figure II.E.2.1 is a contour plot of the level curves for

p(1) = Cor'r'(xn,xn }. Notice that in this model, the correlation is

-1
restricted in range over that of the linear MA(1) models. Using the
IMSL global constrained optimization routine, ZXMWD, with multiple
starts, the extremes for lag-1 serial correlation are |[p(1)]| s 0.4026,

occurring at a, = .903 and B1 = +.690. In Chapter III, we give a

1
continuous random coefficient model with MA(1) correlation structure,
Laplace marginal distribution, and the full range of correlations, i.e.
o(1)] s 5.

b. Invertibility in NLMA(T)

It is well known (Chatfield [Ref. 31, p. 43]) that if

X =2 + 8,2 (II.E.2.4)

is a linear MA(1) model, then substjituting (1/81) in for 31 does not
change the autocorrelation function. This implies that the linear MA(1)
model is not uniquely determined by its autocorrelation function.

It is also well known (Chatfield [Ref. 31: p. 43]) that by
successive substitution, the MA(1) model in (II.E.2.4) can be written as

the infinite autoregression
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2 -
Xpoy * B 5 - e (II.E.2.5)

Zn = Xn - B.X

Likewise, if 1/81 is in (II.E.2.4), we hav2 -

X o+ =X - t.... (II.E.2.6)

Unfortunately, only one of the two processes given by (II.E.2.5) and
(IT.E.2.6) yields a convergent power series depending on whether
|81| < 1 or not. Hence, the restriction on 81 called "invertibility" by
Box and Jenkins [Ref. 23: p. 50], guarantees a one-to-one
correspondence between a linear MA(1) model and its autocorrelation
function by restricting 81 to be such that the MA(1) "inverted" infinite
autoregression is the one with a convergent power series representation.

This definition of invertibility is not totally applicable
to random coefficient models (such as NLMA(1)) with MA(1) correlation
structure because it has not been established that there exists a
corresponding infinite autoregression model.

Likewise, there can be an infinite number of models that
have the same autocorrelation function and marginal distribution. This
is the case in NLMA(1). As was seen in Figure II.E.2.1, each contour
line corresponds to a constant value of p(1) and is achievable by an

infinite number of combinations of (a1,81)-

T
. AR,

The purpose of this section then, is to find a different,

e
A

but meaningful, way to restrict the (a1,B1) rectangle in Figure II.E.2.1
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which: (1) does not further restrict the range of p(1); and (2) which
within the region the NLMA(1) model must be uniquely determined by p(1)

and either a, or 81.

1
From the contours in Figure II.E.2.1, it appears that the
feasible region for p(1) can be partitioned in such a way that the two
goals stated above can be achieved. It is not known, however, if this
partition can be described analytically. Figure II.E.2.2 is an
illustration of the partition into a center region and two complementary
disjoint regicns. The center region is roughly defined as the region to
the right of a line from (~1,.667) to (-.577,1) and to the left of a
line from (.577,1) to (1,.667). Both lines cut across the contours in
the depression on the left and on the ridge on the right. The center
region is more advantageous for two reasons. First, p(1) is a

continuous function of a, and 81 in the center region. Secondly, the

1

parameter estimation is more likely to be easier if the most extreme
values of a, and B1 can be avoided simultaneously. Therefore, we shall
call the center region of Figure II.E.2.2 the "principal" region.

3. A Mixed Autoregressive-Moving Average Model, NLARMA(1,1)

From the theorem in Section II.C.2, we see that any two
(possibly dependent) Laplace variables can be combined with an
independent set of (again, possibly dependent) Laplace variables to form

another Laplace variable. Using this property, if we replace Xn—2 in

NLAR(2) by Ln then the marginal disctribution of {Xn} is still

_1’

standard Laplace. We have tlen
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= '
xn B1Knxn-

+ B.K"L + K L

1 2'n"n-1 n"n’ (II.E.3.1)

where {KA,K;}, {Ln}, {Kn} are as previously defined.
Notice that if Kﬁ is identically zero, corresponding to a, = 0,
we obtain an expression of the form given by (II.E.2.1) for NLMA(1).

Likewise, if Kg is identically zero, we have the NLAR(1) model as given

in (II.D.1.1).
The NLARMA(1,1) model has the same correlation structure as the
linear mixed model ARMA(1,1). Using (II.E.3.1),
= 2
E(X X _y) a1B1E(Xn_1) + aB,E(L

n-TXn-1)

+ E(X_ K L) (II.E.3.2)

But X K_ and Ln are independent so

n-1' 'n

E(X X _4) = 20,8, + a282{a181E(Ln_1Xn_2)

+ asBE(L Lo )+ E(L2_K )}, (II.E.3.3)

Conditioning on Kn—1’ using the independence of {Ln} and

(X _5» L _,) and dividing by the Var(X_) we have

p(1) = a,B, + a282(1—p2-p3+|b2|p2+|b3|p3) ' (II.E.3.4)
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where p.,, Pa | |b3| are defined in (II.C.2.5) through (II.C.2.9).

2l
For £ 2 2, (II.E.3.3) and (II.E.3.4) become

E(ann—l) = “1B1E(Xn-1xn—2) (II.E.3.5)
and

p(L) = a181p(2-1). (II.E.3.6) .

These equations are the same as those of the ARMA(1,1) model
(see Chatfield [Ref. 36: p. 58)]). However, the range of correlations

is significantly reduced over that of ARMA(1,1). Figure II.E.3.1

represents a side-by-side comparison of the (p(1), p(2)) space for
ﬁﬁ NLARMA(1,1) and the familiar linear ARMA(1,1). Although p{(1) can range
from -1 to +1, the combinations with p(2) are severely limited in
NLARMA(1,1). The minimum p(2) in NLARMA(1,1), found numerically using

the reduced gradient method is approximately -.025 at p(1) = *.2. As

gf' |p(1)| increases, p(2) approaches p(1)?2.

4, Higher Order Autoregressive Models, TLAR(p)

D a. Introduction

L It has been stated by Raftery [Ref. 32] that there exists

NEAR{p) models for p 2 2. Also, Nicholls and Quinn [Ref. 16] have given

conditions for the existence and uniqueness, strict stationary, etc.,
for general RCA(p) models. However, only for the NEAR(2) and the
NLAR(2) processes has it been shown explicitly what the necessary

innovation is; and that it is a valid random variable.
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For p 2 3, this has not been accomplished for the general
NEAR(p) process; nor is it done now for the NLAR(p) process. However,
there are 2p different pth order autogressive models with p parameters
that are special cases of the NLAR(p) process. These models are called
the TLAR(p) models. The innovation for the second-order model was given
without proof following the theorem in Section II1.C.2. The likelihood

function and maximum likelihood estimation of a, was given in Section

1
II.D.4 for the TLAR(1) processes.

The TLAR(2) models, including the two TLAR(1) models only
account for four of the infinite number of NLAR(2) models which all have
the same AR(2) correlation structure and standard Laplace marginal
distribution. Since there is a variety of different sample path
behaviors obtainable in the general NLAR(2) model, it is possible that a
TLAR(2) model will not always be the most appropriate model for a given
set of data.

However, as is shown in the remainder of this section, the
TLAR(p) models have an advantage over the general NLAR(p) models. The
TLAR(p) processes for p 2 3 exist; are easily constructed; are partially
time reversible; and are parsimonious with respect to parameters. The
parameters in the TLAR(p) process are easily estimated from the
conditional likelihood function by the metiod of maximum likelihood.

b. Existence and Uniqueness

The TLAR(p) models p 2 1 have the form

p .
x = SkPly Lo, (II.E.4.1)
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S
L
:C' where {Xn} is assumed stationary with Laplace marginal distribution;
"'
i (1) (p)
3 {Kn ,...,Kn } = Kn is a p-variate discrete random variable independent
y
. of {en} and X _,, X _5,.... Foralln
e .
e (1, 0, 0,..., 0) w.p. a,
L
o (0, 1, 0,..., 0) wW.p. a,
.,:\
X !
N
»! K,=1 :
- (0, 0, Oyevey 1) W.p. a
v, P b
[ (0, 0, 0,400y 0) wW.up. 1 -2 a; = A >0, (II.E.4.2)
i=1
so E(K;l)) = a; for all i =1,...,p. The 2P choices of model arise from
the selection of signs for each of the xn-i (either +1 or -1).
40 . . ) .
3 Now if {Xn} is stationary, then the following expression for
'ii the characteristic function of the i.i.d. innovation, € follows from
) (II.E.H4.1) regardless of the choice of signs on Xn-i' (The distribution
S of a symmetric random variable Z is the same as that for -Z). We have,
= LR )
- ¢x(w) = Elexp{-iw( § K, Xn_i+en)}],
o n i=1
N P
Nt =
: = ¢€(m) (.z a; oy (w) + AJ,
" n i= n-i
o
Wi
O
j;‘ 109
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= 0w [ gylw) +0d,

from conditioning on Kn’ the stationarity assumption of {Xn} and the

independence of €n of Xn-1' xn_z,.... Therefore, substituting from -

(II.B.1.2)

¢€(w) - ( 1 J/ (1-)) . X]

1+w? 1+y?

= 1/(1+ 0?). (II.E.4.3)

For A > 0, (II.E.4.3) is recognized as the characteristic function of a

scaled Laplace random variable with scale parameter vX .

Since (II.E.4.1) can be written as

P (i) -
X, = 121{aixn'i + (K Tma )X b+ e (II.E.4.4)

and satisfies the conditions in Section II.C.2, the TLAR(p) models are
RCA(p) models. Since the innovation {sn} and {Kn} are i.i.d., then
TLAR(p) are strictly stationary and {Xn} is the unique solution by the
theorems of Nicholls and Quinn [Ref. 16: p. 31 and p. 37].
¢. Correlation Structure
The TLAR(p) models are pth-order autoregressive in the sense

that E(anx = X = X

n-1 1° xn—2

X., I = 1,...,p. It is also autoregressive in the sense that it

PYRERE Xn-p = xp) is a linear function in
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satisfies a set of Yule-Walker equations. Multiplying (II.E.4.1) by

xn_z, £ 2 1, and taking expectations, we have

E(XnX ) = a, E(X ) +...%a E(X ). (II.E.4.5)

n- 1 n-4 n- p n-4%

Dividing by Var(Xn) and substituting & = 1,...,p into (II1.E.4.5), we

have the set of equations

p(1) = a, + a29(1) +...+app(p-1)

1

p(2) = a1p(1) +a +...+app(p-2)

2

p(p) = a1p(p-1) + a2p(p-2) toaat ap, (II.E.4.6)

where a; = ai(Slgn of Xn_i) for all i = 1,...,p.

For the TLAR(2) cases, the (p(1), p(2)) admissible region is
the entire diamond given in Figure II.C.3.1. It is divided, however,
into four right triangles, one per quadrant, corresponding to the sign
of xn_1 and X _, in the model.

d. Conditional Density of Xn|xn-1'xn—2""’xn—p

The conditional density for each of the 2P specific choices-

of signs are easily found noting that the conditional probability is

just a sum of Laplace cumulative distributions. We have

11
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P(X < x|Xn_ = Xy, X

1 PN YRR Xn—p = xp)

= P(K(i)x + K(Z)x +...+K(p)x + /2 L < x)
n n n “p n

1 2

a,P(VYA L < x-x,) +.o.t a P(YA L < x-x_) + AP(VA L_ < x)
1 n 1 p n p n

)(')(‘l X‘Xp X
= q F |——] +,..+ a F + AF. {—}, (II.E.4.7)
R o PLi/x L%/rg

where FL(-) is the cumulative distribution function of a standard

Laplace random variable. Taking derivatives with respect to x, we have

p X-X,
1 i X
f (X)X, 4e0esx ) =— ) a,f E i + /X f é———%.
xn|xn_1,...,xn_p 1 p S gL T LU A Ll

(II.E.4.8)

e. Conditional Maximum Likelihood Estimation of (a1,...,ap)
Since there are many p-variate Laplace distributions that
(Xp,. ..,X1) could have, and that the pari:ular one is not known to us,

it is not possible to form the exact likelihood function which is

written

n
£ =( = ¢ £ . (II.E.4.9)
Xpoo Xy T fiapar XXX XXy

Instead, we can calculate the conditional log-likelihood

function as the logarithm of the product of the first (n-p) terms in

g .- - P T ) P - . - 0 - . - - C T . - . - - - - - . - - - - -~ -
R AN RS TR VAP Y PSP T T T I L N T e S S TR S IR I N
. ' T AT T T e e T S I T R e T L I Y I e P
o ieom ol i i WIS O U N A S P J~a  r P PV VIR YRR Wi RERDE WANE WY WY Y WSl WS RN WP WY W IR WA UK. SP

. ”ii




4
1]

a
L]
4 2

- |'f.
A

&

e |
. "
PP

s

ﬁ
e
.
.

(II.E.4.,9), This is commonly done. See, for example, Priestly
(Ref. 33: p. 350)]. Using a, = aisign(xn_i), we have the following
single expression for the conditional log-likelihood function, given the
n realizations from TLAR(p) process, written as a function of a; for

i=1,...,p,

n
L(a,,...pa_) = } 4ni{f '
1 Pl e X X qeennXy -
n . p Vi X,
= I ml— (larf ——J} e (=) (II.E.4.10)
i=p+1 v (g1 Y ) V5
where
X, = X, _. if a, 2 0, J=1s004,pP,
v = ! 1=J J (II.E.4.11)
J X. +x, . if a, < O,
1 1-] J

L=p*l,..0uni ay = laj| and A are functions of the variable aj-
We see that when p = 1 (II.E.4.10) and (II.E.4.11) give the
expressions used in the TLAR(1) process in Section II.D.A4.
As a function of (al,...,ap), (II.E.4.10) is continuous

throughout the interior of the p-dimensional subspace on which it is

defined. It is not differentiable with respect to a.1 anywhere that

a, = 0. The maximization of (II.E.4.10) can be formulated as a

1

constrained non-linear program for which a numerical routine would
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gﬁ probably be required to solve for (51,...,§p), the joint conditional

A likelihood estimator of (a1,...ap).
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INTRODUCTION

The discrete random coefficient NLARMA(p,q) models studied in the
previous chapter offered a variety of different dependency structures
analogous to their linear ARMA(p,q) counterparts as described in the
Box-Jenkins approach to time series analysis. These models, however,
could be considered deficient in some ways. For one thing, all the
models have, by design, the same marginal distribution, i.e. Laplace.
To obtain a different marginal distribution would require starting over
to develop the appropriate innovation sequence. Raftery [Ref. 32] has
reported some results in extending the NEAR framework to other models
with different marginals and ARMA correlation structures.

Furthermore, the parameter estimation, which is easy to do in
Gaussian linear AR(p) models, is not particularly easy in the
autoregressive process of the NLARMA(p,q) family. In the moving average
and mixed models of NLARMA(p,q), the maximum likelihood procedure is
even more difficult. Raftery [Ref. 32] claims that the maximum

likelihood estimator of B1in the NLAR(1) process would be super-

efficient based on his work in parameter estimation in the NEAR(1)
process and the extensions that he has proposed. Super-efficiency is

not an attractive property of an estimator.

"o

i
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o Again, the moving average model, NLMA(1), does not allow for the
full range of correlations that are obtainable with the linear MA(1)
model.

Finally, note that there is another attractive property of the
random coefficient models that is not fully exploitable in the discrete
random coefficient models (NEAR(1) and NLAR(1)). That is, in the
NLARMA(p,q) models the coefficients of the process can change somewhat
}i: over time and the process itself remains stationary. Andel [Ref. 34]

has noted that in many applications of time series analysis,
‘; particularly in the fields of hydrology, meteorology and biology, the
coefficients of the model are attempting to describe complicated
y processes. The coefficients may have some random behavior of their own,
apart from that usually attributed to the independent innovation
sequence.

If stationary constant coefficient models are not particularly good
o at modelling such systems (as suggested by Andel [Ref. 34]), then the
NLARMA(p,q) models would not be much better because the coefficients are
J limited to a finite (very small) number of possible values. However,
Lawrance and Lewis [Ref. 6] have shown in the case of NEAR(1) that it is
possible to alter the character of the sample paths of a given low-order
ff autoregression by extending the two-parameter model to one having 4
parameters. The number of extra parameters could be excessive and the

costs in parameter estimation unacceptable.

In this chapter, a different family of stationary random coefficient

Coak

time series models is introduced which retains many of the favorable

aspects of the NLARMA family (specified marginal and correlation
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structure) and offers alternatives in the areas pointed out above as
disadvantages in the NLARMA construction.

The symmetric marginal distribution can be specified by one shape
parameter to be any one of an infinite number of non-Gaussian distri-
butions. This family is the %-Laplace family and is examined in the
next section. The family--including as a special case the double
exponential (Laplace) distribution--has members with extremely high
kurtosis, as well as those that have a limiting kurtosis that approaches
that of the Gaussian distribution. This offers a significant advantage
over the NLARMA models.

Just as discrete random variables are needed for the coefficients in
the NLARMA(p,q) models, the square roots of Beta random variables are
used in this family of models to maintain the L-Laplace marginal distri-
bution. The square root Beta transformation theorem is the key result
through which all the time series models in this chapter are formulated.
By the theorem, Laplace variables are changed into those that have
f2-Laplace distributions. Previous uses of Beta random variables in
modelling non-Normal time series is evident in the models with Gamma
marginals of Lewis [Ref. 35] and Hugus [Ref. 30].

The fact that the coefficients are continuous instead of discrete
allows for a continuous variation. That they are functions of Beta
random variables restricts the variation to a bounded interval. This is
likely to facilitate the modelling of those "complicated" systems as

described by Andel [Ref. 34].
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The principal models investigated in this chapter are those with
first-order autoregressive correlation structure. They are first-order
Markov processes. For the purpose of discussing parameter estimation in
this family of autoregressive models, as opposed to the NLAR(1) family,
the focus is narrowed to that AR(1) model of the family with Laplace
marginals--the so-called Beta-Laplace First-Order Autoregressive model,
BELAR(1). Several point estimators of location and scale are discussed
and examined through simulation in SIMTBED [Ref. 15]. The one parameter
which uniquely determines all the correlations of lag k in the BELAR(1)
model can be estimated by a least squares procedure which has very nice
asymptotic properties. The maximum likelihood estimator of serial
correlation is also obtained using numerical methods.

First-order autoregressive correlation structure is not the only
type of dependency relationship that is obtainable from using the square
root Beta-Laplace transformation. In the last section of this chapter a
first-order moving average model and an extension to a qth-order model
are introduced. The MA(1) model retains the full range of correlations
of the linear MA(1) models. This was not the case in the NLMA(1) model.
B. L-LAPLACE DISTRIBUTION

1. The %-Laplace Random Variable

It was shown in Section II.B that the standard Laplace
distribution belongs to the class of infinitely divisible distributions.
The probability density function of a Laplace distributed variable was
given in (II.B.1). The characteristic function of the standard Laplace

random variable was given in (II.B.2). Thus if
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1 3%

- oy (w) = (W) , L>0, (III.B.1.1)

; then X is a random v.riable. 1In fact it is the difference of two
- independent, identically distributed Gamma(%,1) random variables where §

75; ] is the shape parameter and 1 is the scale parameter. Therefore, if X

P has a characteristic function given by (III.B.1.1), then X is an

L %-Laplace random variable.

'}f Since (III.B.1.1) is a real function of w, X is a symmetric

) random variable. It is easily verified that

. 0 if nis odd,

e E(X") = (III.B.1.2)

o8 (k+1)[k]1[k] if n=2k, k =1,2,...,

Aﬁ: where b[k] = b(b*1)...(b+k-1) for all b > 0. Since all odd moments are
zero in (III.B.1.2), the f-Laplace distribution is not skewed for any
£ > 0. From (III.B.1.2) we find that the kurtosis is

J y Y

E(X) - (E(X_)) [21,[2]

= Yy, = —2 n .3 L T 3.3, (III.B.1.3)
2 Var’(Xn) (20)* L

The kurtosis approaches 3 as & + =, which corresponds to that of a

FLx N

R -~ ¢l

Normal distribution.
Since an %-Laplace random variable, X(%), is the difference of
two i.i.d. Gamma(%,1) random variables, we obtain the density for X()

by using conditional 2xpectations.
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If G1(2,1) and G2(1,1) are the i.i.d. Gamma(f,1) random

variables, then conditioning on 02(2,1), we have

P(X<x) = P(G1-Gz<x) Ecz{P(G1—G2<leZ=g)}
EGZ{P(G1<X+3)} (III.B.1.4)

Since Gamma random variables are non-negative,

0 if g < -x,
P(G1<x+g) =

FG (x+g) if g > x, (III.B.1.5)
1

where F

1

G (x+g) is the cumulative distribution function of G1. The

expressions are shortened from Gi(2,1) to G(%,1), because they are

i.i.d. Therefore, (III.B.1.4) can be written as

g:@
P(X<x) = f Fo(x+g)f . (g)dy, (III.B.1.6)
g=L{x)
where
gl—1exp(-g) g > 0,
fc(g;l) } r(e)

otherwise, (II.B.1.7)

is the density of a Gamma (%,1!) random variable and again, because of

the non-negativity
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(III.B.1.8)

Differentiating (III.B.1.6) using Leibniz' rule for the

derivative of an integral with variable limits, we have, after some

simplification
g-r
1 1 1-2
£ (u;) = > % exp{-(2g+u)} dg. (III.B.1.9)
X g=L(u) r#(e) (glg+u)

Now if & is a positive integer, (III.B.1.9) can be evaluated
analytically using integration by parts. If £ = 1 we obtain the density

5 of the standard Laplace distribution. For £ = 2,3,4 the densities are

also well known derivations given, for example, as textbook pracblems by
Feller [Ref. 25: p. 6U4]. Feller however looks at the results of
(III.B.1.9) as the n-fold convolution (n = 2,3,4) of i.i.d. standard
Laplace random variables. Figure III.B.1,1 shows the densities of the

2-Laplace random variable for & = 1,2,3,4. Note how the graphs take on

the shape of a Normal density with ¢2 = 2%.

2. Numerical Evaluation of the %-Laplace Density

If ¢ > 0 and is not an integer, then (III.B.1.9) must be
evaluated numerically. We will be interested in the evaluation of the
:i density in (III.B.1.9) for 0 < & < 1, in order to calculate conditional

densities and likelihood function.
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N
Ehj Figure III,B.2.1 displays examples of densities for non-integral
:iii % obtained by using the IMSL numerical integration scheme DCADRE to
~:- evaluate (III.B.1.9). The upper limit of integration in (III.B.1.9) is
Szf replaced by a suitable constant m > 1., Since for g > 1 and fixed % and
Eii u>> o,
] e < LG ey
,iéj

then
;}; |DCADRE-f, (u;0)| < exp;;é%zim)} . (III.B.2.2)
-;ﬁ Difficulty in integrating comes about because of the singularity
;S at the lower limit of integration. If 2 2 1, this singularity
o disappears by rewriting (1/(g(g+u))1_z as (g(g+u))2-1. For £ < 1, there
Z%; are two alternatives for removing the singularity. We can transform the
&:' variable of integration, g, to become t = gz and the singularity at
fﬂ g = 0 is removed. Or, we could do an integration by parts to remove
f{ either the singularity at g = 0 for u > 0 or at g = -u for u < 0. In
ia; either case, the remaining integral must be evaluated numerically for
’:-_’.. u = 0.
Eii Since X is a symmetric random variable we can rewrite
331 (II1.B.1.9) using integration by parts to obtain an expression that will
;f: be easier to apply. For all u = 0
Z:Zf-i
b
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- 8:@ 2 -
£, (us2) = ef;l‘fﬁ(l‘)‘l) [ g {2(3+L“D;ll“ exp(-2g)dg.  (III.B.2.3)
g=0 (g+lul)

-
OO SRR

If 2 $ .5 note that fx(u) is not defined at ¢ = 0. For £ > .5 and

u =20,

28-1

fx(O;l) = I(22-1)/{r%(g) 2 P < = (III.B.2.4)

3. The Square Root Beta-Laplace Transformation

The principal result of this section is the proof of the so-
called square root Beta-Laplace transformation theorem. By this
technique, an 21-Laplace random variable can be transformed into an
12-Laplace random variable where 22 < 21. The time series models
developed in Sections III.C - III.F rely on the following:

Theorem:

Let X ~ f&-Laplace and B ~ Beta(a,%-a), where 0 < a < % and B is

defined on the interval [0,1], i.e. standard Beta. If Y = B1/2X

» then
Y ~ a-Laplace.
Proof':

By conditioning on B, we obtain the following expression for the

characteristic function of Y;

dylw) = E{exp(iB'  2¥Xe)}
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= EB[E{exp(ib1/2Xm)}]
- £ L{1/ (1rbw) )0, (III.B.3.1)

Since bw? > 0, a convergent power series representation of

(I11.B.3.1) is given by

o [k]
by (w) = Epf ) gk! (~02)%p%y, (III.B.3.2)
k=0
where again ltk] = (R+1)...(+k=1) for k = 1,2,...; 1[O] =1,

Interchanging the expectation and summation in a convergent

power series gives

o [k]
¢y (w) = ) &ET" (-w2)¥ EB(B%). (III.B.3.3)
k=0

From Johnson and Kotz [Ref. 36: v. 2, p. 40], we have

E(Bk) = a[k]/ztk] for k integer. (III.B.3.4)

Substituting (III.B.3.4) and (III.B.3.3), we have

. a[k] K 1 a
oy (w) = ) T (-w?)" = (7eo7) - (III.B.3.5)
k=0 Q.E.D.
126
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C. %-LAPLACE FIRST-ORDER AUTOREGRESSIVE TIME SERIES MODEL

P
a0
L

1. Introduction

b\l
‘-
-
&
'R‘u
W

In this section, we exploit the square root Beta-Laplace
transform to define a 2-parameter first-order autoregressive model in
£-Laplace variables. The first parameter, &, determines the non-
Gaussian symmetric marginal distribution of the time series ensemble.
The second parameter, a, given the value of £, determines uniquely the
lag-1 serial correlation. Since the model is shown to be first-order
Markovian, a determines the entire autocorrelation function up to the
sign. We show also that the models are always partially time reversible
Wwith respect to both runs probabilities and directional moments.

Writing the stationary time series {Xn(l)} in the form of an

additive random coefficient equation, we have

1/2 172
Xn(l) = An (u,l-a)Xn_1(2) + Bn (l-a,a)Ln(l), (III.C.1.1)

where {Xn(l)} is assumed to be a stationary time series with a marginal

f-Laplace distribution; {A;/z(a,l-a)} is an i.i.d. sequence such that

An(a,l-u) is a standard Beta; {B;/Z(l—a,a)} is an i.i.d. sequence

independent of {A;/Z(a,l—a)} such that Bn(l-a,a) is also standard Beta;

and {Ln(l)} is an i.i.d. sequence, independent of the coefficient
processes, such that Ln(l) is f-Laplace. The coefficient An(a,l-a) and

Bn(l-a,a) are assumed to be independent of X X etc. If it is

n-2’

assumed that Xn_1(2) has a %-Laplace distribution, then by the theorem

n-1"

in Section III.B.3 so does Xn(l). The fact that the process is
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Markovian follows by construction. To start the process in the

stationary distribution set Xo(l) - Lo(l).

The parameter space is £ > 0 and 0 S o S &.

For the Beta random variables An and Bn (hence their square
roots) to be properly defined, each of the parameters must be positive.

Hence, when a = 0 or a = &, (III.C.1.1) as defined above is no longer

appropriate because each of A;/Z and B;/Z has a parameter that is

identically zero. If a = 0, it is understood that the {A;/Z} sequence

1/2

is identically zero and the {Bn

} sequence is one; therefore,

(III.C.1.1) becomes Xn(l) = Ln(k) and the {Xn} sequence is the {Ln}

corresponding to the i.i.d. L-Laplace case. For a = 1, AA/Z is one and

B;/Z is identically zero; therefore, if XO = Lo(l), then X is

2-Laplace, but is not an ergodic process.

If we let

1/2
. Bn (L a,a)Ln(l) (III.C.1.2)
then by the Theorem in Section III.B.3, e, (L-a)-Laplace with i
E(en) = 0 and Var(en) = 2(2-a) for all n. Since the variance must be
non-negative, it 1s also necessary that a £ 2. By the stationarity of

{Xn} and since A;/z(a,l-a)x () is independent of € the

n-1

characteristic function of the right-hand side of (III.C.1.1) gives

U Ja {1 Jo=a ([ 1 )&
Oy gy (W) = E1+w23 E1+w2g = E1+w2% . (III.C.1.3)
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Examples of sample path behavior for selected % and a are given in

P |
s

Figure III.C.1.1. Note that although the correlation coefficient is

.
{

b
.
N
..
.
Y
-

.

approximately 0.8 for all sets of % and a in Figure III.C.1.1, there is
considerable difference in the sample path behavior as £ changes. Fcr
the samples from small values of %(.10 and .05), there are runs of
values that are very nearly zero in magnitude.

2. Correlation Structure

Using equation (III.C.1.1) recursively along with the

stationarity and independence of the process {xn}, we have

E(X (DX _, (2)}
2
E{Xn_1(2)}

p(1) = Corr(xn(l),xn_1(2) =

‘/Z(a,z-a>x (Wve X, (2))

EL{A e
E{X (2)}

1
2
n 1

B % (o, 2 B2 ()
E(XT_ ()]

- E(al /2
n

(a, &-a)}. (I1I1.C.2.1)

From Johnson and Kotz [Ref. 36: v. 2, p. 40], we have for

An ~ Beta(a,%-a), that

o E(A (a,2-a)) [latr)T(%)

» n = ()T (o) for all n, r > 0, (II1.C.2.2)

where T(.) is the incomplete Gamma function. Therefore

129

AN L B N A N U TP T I S Y
- B T e e e e e e
. .

o ‘ . . P .
GRS v Id P ) . . .
e e A b A A R e I i Dl el i i i i it bl

B .. -
S R, ek e T e
s A S “ e e -
,._.‘--_'-‘,_'.--.u-(‘ﬁ.;r.(

N w5, W
. .r;.:u .r\.m'&u:' o3y




8" ~(1)d fsyied sidwes

004 o8 hed [ o 0
T

-

2
H
o— - _ - 4o
.
’ 99008 =(4)9'50 =I'5850 =2
. )Y
00 [ o or oz
¢ T T T T Y
B
4
14

1 .,..;__...Fi;. °

ol |

Vo =gy

LA S R ahar ash Arag S st mustd
EAMNAAR P -

’ 2209 ~())GT =rel’ ="

TN

o

R

SHIVd J1dWVS

:(1)uy eoerdel-e3edg-y T T°O°III 2InbTd

Z-

L1

- .— -
1.
4
Sv09 =(1)9°01 =F'SBLO =P
Iy WL
o0l 08 00 or L3 00t o [.d or ot [ ]
h g T L L Al ¥y 1 1 Lo T T v T T LS L L T
L L

2=

'.,L_ _-____ A | . _. ,. _P.._P i_r__ Fi .i_

Z-

o
o

SZY09 =(1}°SL =1'vG =¥ SO0 = (i) i =I'i¢ =2

:(1)yv 30V1dv1-v139-¢

130

nw




Paid-andr s ek i anar SEASCRES o T, A e
. - ot . . e 0

OELANE AN A S P A ML A A A AP

F(a+1/2)T(Q) al(a+1/2)T(L+1)
o0 = 72 T(a) = Lr(e1/2) T(arT) " (III.C.2.3)

Note that as a + %, then p(1) » 1, Similarly as a » 0, p(1) » 0.
Therefore, we obtain a full range of positive correlations in a

one-to-one function of a for any given value of &.

Also from (III.C.1.1), we see that the process is explicitly
autoregressive. It is also autoregressive in the sense of expectations
in that E(X (L)|X__ (&) = x) is a linear function of x. Since
(III.C.1.1) defines a first-order Markovian process, p(k) = p(1)|k| for

all k., To see this we write for all k

E{X_ ()X ()}
n n-k
p(k) = T
E{X ()X (2)}
172 n=1 n-k
= E{An (a! Z_Q)} o1
= p(1)p(k=1)

[}

p(Mp(k=-2)p(1)

oIkl

If we replace A;/z(a,l-a) in (III.C.1.1) by -A;/2(a,2-a) we have

__I(at1/72)T(R) _ _ al(a+1/2)T(R+1) ,
(1) = r(e+1/2)r(ae)  ar(e+1/2)r(a+1) - (1II.C.2.5)
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bﬁ We can, therefore, achieve a full range of negative correlations, and
AR

likewise
o) = -0 ¥l il®l gor an1 k. (I1I1.C.2.6)

3. Partial Time Reversibility

The f-Laplace first-order autoregressive models are partially
time reversible, both with respect to the directional moments,
{X;(l)Xn_m(l)} form =0, +1, #2,..., and with respect to runs
probabilities, P{Xn(2)<xn_1(l)} = P{Xn(1)>xn_1(l)}.

Using mathematical induction, stationarity of {Xn(l)}. and the

independence of the coefficients and the innovation from each other and

ey

previous values of {Xn(l)}, it is the case that {X;(Q)Xn_m(l)}

= E{Xn(l)xg_m(l)} = 0 for all n and for all m =20, 1, 2,.... Let

Xn~ L-Laplace. For m = O, E(X;) = 0 by (III.B.1.2)., Assuming for m = Kk

tha. E(X;Xn_k) = 0, we have for m = k+1 after substituting from

(III.C.%.1) and (III.C.1.2) that

-‘?‘-"‘4
b 'y
R
[

172

2 - 2 2
E{ann-(k+1)} - E{(Anxn-1+2An Xn—1€n+€n)xn-(k+1)}
= 2
E(ADEX2 X~ pqy !
= 2 =
E(A DE(X2X _ ) = 0. (III.C.3.1)
Assuming for m = k that E(X _X?* ) = 0, we have for m = k+1 after

n n-k

substituting ~gain from (III.C.1.1) and (III.C.1.2)
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e

1/2

E{ang_(k+1)} B E{szl-(k+1)““n Xp-1*en)}
1/2
= BO TR ey ¥
1/2 .
- E(A "SE(X2_ X ) = 0. (III.C.3.2)

To see that this model is also partially time reversible with

respect to runs probabilities, we show that the random variable Zn = Xn

- Xn-1 is symmetric. Now Zn is symmetric if and only if the

characteristic function of Zn is real valued. We write

¢Z(w) = E[exp{iw(Xn - X )}]

n-1

- Elexplinte -(1-A1"%)x__11]

1/2

= E{exp(iwe )}E[exp{-iw(1-A ")X _, }]
1 Je-a 172
= ETT;?} EA[E[GXP{‘iw(1-a )Xn_1}]]
1 Ji-a 1 L .
i %1+w5 EA{E1 1722 2% " (I1I.C.3.3)
+(1-a ) w

Since (I1I.C.3.3) is real valued that concludes the proof.
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D. THE BETA-LAPLACE AUTOREGRESSIVE MODEL, BELAR(1)

1. Introduction

In this section, we set £ = 1 in (III.C.1.1) and (III.C.1.2) to

obtain the following expression for the BELAR(1) process
172
X, = A (a,l-a)Xn_ * e (ITI.D.1.1)

where {sn} is an i.i.d. sequence with e " (1-a)-Laplace with moments
and density given by (III.B.1.2) and (III.B.2.3). Xn now has a standard
Laplace marginal distribution. The only parameter in the model is a
with 0 € a £ 1. All the results of Section III.C still hold with £ = 1.
Examples of sample path behavior are given in Figure III.D.1.1.

We do two things in this section. First, we derive the
2quations for the conditional density of Xn|xn—1' The second is the
derivation of joint density and the logarithm of the likelihood
fun-tisn., The expression is used in Section III.E.6 to obtain the

maximum likelihood estimate for a.

2. The Conditional Density

To find the conditional density of Xn|Xn we Wwill need the

1/
density of An 2(0.1-&). Let An be a standard Beta random variable with

_1’

parameters {a,1-a). Since An is defined only on the given interval,

zern to one
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bS

2
1/2 P(An<a) 0<ac<i1 \

P(An <a) =

0 otherwise

x=a?
= f £, (x;a)dx, 0<ac<i, (1II.D.2.1)

n
X=

where fA (x;a) is the standard Beta(a,l1-a) density given by
n

a® T (1-a)¥ () r(1-a) 0 < ac< 1,
fA (x;a) =
n 0 otherwise. (III.D.2.2)

Differentiating (III.D.2.1) with respect to a, we obtain the following

expression for

2a-1

2 a
2.a

= — 0 <ac<i. (III.D.2.3)
(0] (22,

£ (asa)
A1/2

n

Examples of (III.D.2.3) are given in Figure IIl.D.2.1.
Now we evaluate P(Xn < x|Xn_1=y) using (III.D.1.1), (III.B.1.2),

and (III.B.2.3). Conditioning on A;/Z(a,1—a) we obtain
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[P{en < x - yA

= E
A1/2
n

{P(en

< x~ay)}

E
A1/2
n

= E {F
A1/2 €

n

(x-ay)}
n

a=L2(x)

J

a=Ll(x)

FE (x~ay) f
n

where from (III.B.2.3) the cumulative di

written as

(u;1-a)du
€

u=ay-x

f

u=0

£ (u;l-a)du
€
n

and Li(x), i = 1,2 are the limits of

functions of x.

1/2
n

1/2
=a

(a,1 n

-a)|A H]

(aja) da , (III.D.2.4)

A1/2
n

stribution function of En can be

if x-ay 0,

(III.D.2.5)

if x-ay < 0,

integration on a which may be
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Since FE (x-ay) changes definition for negative and positive
n

s
(k)

(x-ay) and since 0 < a < 1, we rewrite (III.D.2.4) based on the ratio

x/y, which is a constant. Thus

a=1
F_ (x-ay)f (aja)da if x/y 2 1 or x/y S 0;
En A1/2
a=0 n
P(Xn<x|Xn_1=y) = { (III.D.2.6)
a=x/y
j Fen(x-ay)fA1/2(a;a)da
(aao n
a=1
+ f F_ (x-ay)f | ~(ajo)da if 0 < x/y < 1.
n A
a=x/y n

Differentiating (III.D.2.4) with respect to x using Leibniz'
rule gives the following general expression for the conditional density.

We have

(x|y) %;{P(Xn<xlxn_1=y)}

a=L2(x)

(aja)da

]

fe (x-ay;1-a)f 12
n A

a=L1(x) n

+ F€ {x-yLz(x)}f 1/2{L2
n A

n

(x);al :—XLZ(X)
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e

- Fe {x-yL1(x)f 1/2
n A

n

d
{L1(x);a}a;L1(x). (III.D.2.7)

From (III.B.2.3), (III.D.2.3) and (III.D.2.5) set

a26_1exp{-(2g+lx—ay[)} g1_a(2g+21x-ay[fu)
r*(1-a) T(a) (1-a®)% (g+|x-ay|)'*® (1-a)

h(g,a) = 2 (III.D.2.8)

Now using (III.D.2.7) to differentiate each expression in (III.D.2.6),

we have the following explicit expressions for

a=1 g=o
f f h(g,a)dgda if x/y 21 or x/y $0,
a=0 g=0
£y IX (x|y) = (III.D.2.9) |
n'"n-1 !
{ a=x/y g== J
J J h(g,a)dgda ‘
a=0 g=0
a=1 g:w
+ I j h(g,a)dgda if 0 < x/y < 1 .
a=x/y g=0

It will be seen later that working with (III.D.2.9) will be

inconvenient. Hence, we rewrite (III.D.2.9) as
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a=|

j £ {(x-ay);1-alf , ,
n A

a=0 n

>
(aja)da if x/y 21

or x/y £ 0

| (x]y) = (II1.D.2.10)
n' n-1
asx/y

fe {(x-ay);1-alf 1/2
n A

a=0 n

(a;al)da

a=1
+ J f‘e {(x=ay);1=-alf 1/2
n A
a=x/y n

(aj;a)da if 0 < x/y < 1.

The conditional density in (III.D.2.10) can assume different
shapes as a function of x depending on the fixed conditioning value, vy,
and the particular, fixed a. If a = 0, then (III.D.2.10) becomes the
standard Laplace density as given in (II.B.1.1) with py =0 and A = 1.
If y = 0, then (III.D.2.10) becomes the (1-a)-Laplace density as given
in (III.B.2.3) with £ = 1-a. In Figure III.D.2.2 are presented different
examples of (III.D.2.10) for a fixed y and different values of a. Note
that if a < 1/2 then (III.D.2.10) is continuous for all x. If a 2 1/2
and x =y, (III.D.2.10) is undefined, e.g., x =y = 0.

In a similar manner, expressions for (III.D.2.4)-(III.D.2.10)
can be derived for the BELAR(1) model with negative correlations,
Placing -A;/Z(a,1-a) in (III.D.1.1), we replace x-ay by x+ay and
determine the appropriat< form of the conditional density based on the

ratio (-x/y). We have for the negative BELAR(1) process
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a=1
I fen{(x+ay);1-a}fA1/2(a;a)da
a=0 n
if -x/y 2 1 or -x/y 2 O,
£y Ix (x]y) = (III.D.2.11)
n' n-1
a=-x/y
j £ {(x+ay),1-alf | ,(aja)da
n A
a=0 n
a=1
+ j £ ((x+ay);l-alf | -(a;a)da
n A
a= -x/y n
if 0 < -x/y < 1.
3. The Joint Distribution and the Likelihood Function
An expression for the joint density of xn,...,X1 can be written
using f X (xn(xn_1) and £, (x,) as follows:
n'"n-1 1
n-1
£ (X_,eeeyx,) = f, (x,) T f (X__ oy %)
X +.X, 'n 1 X0 xn_(k_l)lxn_k n-(k-1) ' "n-k

(III.D.3.1)

The log-likelihood function as a function of a given {Xn} is just the

natural logarithm of (III.D.3.1). We have

n-1
Lla) = -(In 2 + |x,[) + ] 1In{fy

V1.
k=1 n-(k=-1) xn-k

(xn—(k-1) Xn-k

(ITI.D.3.2)
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It is now a simple matter to determine which branch of

(II11.D.2.10) or (II1.D.2.11) is needed for each pair (xn,x ) and to

n-1
substitute it into the sum in (III.D.3.2). We postpone further
discussion of the likelihood function until Section III.E.6.

4, Numerical Evaluation of the Conditional Density

a. Introduction

This section is devoted to explaining the methodology by
which we came to resolve the problems in the numerical integration of
the conditional density. This is as important an issue as the
derivation itself, since the likelihood function and the maximum
likelihood estimators can not be evaluated without it. As is pointed
out below, the standard numerical routines were unsuccessful in
accurately evaluating (III.D.2.9) around the singularities in
(III.D.2.8). We also give and justify the approximations that were used
to remove each of the singularities. The graphs in Figure I11.D.2.2
were obtained using the method. The methodology was used again in
Section III.E.6 to evaluate the log-likelihood function in the method of
maximum likelihood estimation.

In the FORTRAN routine that calculates the conditional
density as given in (III.D.2.10), the approximations in (III.D.4.6),
(III.D.4.8) and (III.D.4.11) are added to the results from DCADRE.
Combinations of these approximations are invoked as necessary depending
on the ratio x/y.

The same procedure is used to evaluate the density in

{(III.D.2.11) for the BELAR(1) model which produces negative correlations
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for odd lags. We just check for 0 < -x/y < 1 and choose the appropriate
value of ¢ in (III.D.4.6) and (III.D.4.8) where x-ay is replaced by
x+ay.
b. The Methodology

Attempts to evalute the conditional density, as given by
(I11.D.2.8) and (III.D.2.9), using the standard IMSL double integration
routines failed. Even the IMSL routine DBLIN which is often successful
in handling ill-behaved integrands, was unable to evaluate (III1.D.2.8)
around the singularities. For a < 1/2, along the lines a = 0 and a = 1,
(III.D.2.8) is unbounded. Similarly for a 2 1/2, along the line a = !
and at the pcirt (g,a) = (0,x/y) for 0 < x/y < 1, (III.D.2.8) is
unbounded. Arbitrarily declaring (III.D.2.8) to be zero under these
conditions did not always allow DBLIN to accurately evaluate
(I11.D.2.9).

We succceded in evaluating the conditional density by

working with the form given by (III.D.2.10) with f (a;a) given by

A1/2
n

(III.D.2.3) and f‘E {(x-ay);1-a} given by (III.B.2.3). We used the IMSL
n

routine DCADRE to construct an extensive table of values for the (1-a)-
Laplace density with the intention to linearly interpolate from the
table as needed. The error in the value of f€(|u|;1-a) in the table i3

controlled by DCADRE. The error in the value of f€(|u -a) obtained

ol
by using linear interpolation for ]uol not in the table is calculated in

the standard way. From Gerald [Ref. 28: p. 168]

145

AEEERY

R L AT S e . PR . . S .
e N Tl e . NP . . .« -
P I RN T 1 W P P P OO 2PV SRR P, R Py Urh T WG P A S’ [y U0 [ Vil UG W G AP W P




dzfE fesl-a)
h2s(s-1) n
2 du* !

(III.D.4.1)

Error Interpolation| =

where h is subinterval length and s = (uo-u)/h. Substituting the second
divided difference into (III.D.4.1), in place of the unknown second
derivative and also noting that the worst case for linear interpolation
is at the center of the subinterval, we have

Error Interpolation| < -% A*f_ (Juls1=0)] , (III.D.4.2)

n

where A*f  is the second difference. Because f_ (Ju];1-a) is non-
n n

negative and monotone decreasing in [u], the largest values of A?*f are
in suLrintervals close to zero. The table that was constructed,
therefore, uses smaller subintervals close to zero and larger
subintervals further out.

Finally we used DCADRE again to evaluate (III1.D.2.10) except
near the singularities, which we were able to evaluate analytically and
then add back. The technique is often referred to as "removing the
singularity”.

¢. Removing the Singularities Due to (III.D.2.3)

We now describe how we evaluated the integrals in
(II1.D.2.10) in the vicinity of the singularities in (III.D.2.3). We
see that the density of A;/Z(a,1—a) given in (III.D.2.3) is undefined at
a=0anda =1 for a < 1/2 and at a =1 for a 2 1/2. We alsc note from

(I1I.D.2.3) that for small § > 0 and a < 1/2
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2a2a-1

fA‘/2(a;°) Moy @ 2¢2<¢s (III.D.4.3)
n
and for all 0 < a < 1
2a
£ () o =, -8 <a< 1. (III.D.4.4)
A r(a)T(1-a)(1-a%)

n
Therefore for a < 1/2 and 1 £ x/y or x/y £ 0 we have from (III.D.4.3)

2a-1

F(a)F(1 m— fen{<x-ay>;1—a}da.

N —

a=
1/Z(a a)f {(x-ay);1-alda - j

®n
a=0 n

(III.D.4.5)

Since f‘E (¢) is continuous in this situation, there exists a number ¢ so
n

that 0 < ¢ < § and |x| £ |x-cy]

A

|x-6y| and

2a-1

a= 2a-1
j f {(x-ay);1-alda

F(a)F(1—a)

da

as=
F(a)F(1 a) € fe tix=cy)si-a J

n

2
vyl (1-a) 8
fen{(x cy)il=o} FEIo T (Tea)

W

(III.D.4.6)

A natural approximation for ¢ allows |x-cy| to be the average,
(1/72)]2x-8y].

For all a and 1 < x/y or x/y < 0 we have from (III.D.4. %
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f 1/‘Z(a;or.)f‘s {(x-ay);1-alda
A n
n
a=1 1 2a
J O AT fsn{(x-ay);1—a}da . (III.D.4.7)
a=1-§

Likewise there exists a new number ¢ so that 1-§ < ¢ < 1 and

|x-y| < |x-ey| < |x-y+8y| and

7 ! 22 f {(x-ay);1-alda
j r(a)I(1-a) (1-a2)% ©p yiilme
a=1-§ )
a=1
1 2a
= £ {{(x-cy);l-a} f )da
€ T(a)T(1-a) 240
b a=1-¢ (1-a%)
1-a
a(28)

f€ {(x-cy);1-a} (III1.D.4.8)

n r(1+a)r(2-a)

Again a natural approximation for ¢ allows |x—oy| to be the average,

(172)|2(x-y)+8y

d. Removing the Singularity Due to (III.B.2.3)
The final type of singularity occurs when 0 < a = x/y < 1

and a 2 1/2. When this situation occurs we leave fe {«) under the
n

integral and argue that in a §-neighborhood around x/y < 1,

f (a;n) = f (x/y;a). Note that by the same argument that gave us
A1/2 A1/2
n n
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Li (III.D.4.6) and (III.D.4.8), there exist two numbers c, and ¢, S0 that
:f (x/y)-8 & c, S x/y and x/y s c, < (x/y)+$§ and

a=x/y
fA1/2(a;a)f€n{(x—ay);1—a}da
a=(x/y)-8 "n

a=(x/y)+s

+ f 1/2(a;oz)f‘€n{(x—ay);1-oz}da

a=x/y An

a=x/y
= fA1/2(01;a) J fen{(x-aY);1-a}da
n a=(x/y)-§

a=(x/y)+§
RSP CIT) J f_ {(x-ay);1-alda. (III.D.4.9)
A n
n a=x/y

We chose to approximate c1 and 02 both by x/y for x/y = + 1, and have

f 1/2(x/y;ot) < = for all a. If x/y =1 or x =0 and y
A
n

0 simultane-

ously, the value of (III.D.2.10) is undefined for a 2 1/2.

Now changing the variable of integration so that (x-ay) = u,

we have from (III.D.4.9) that for all a 2 1/2

a=x/y a=(x/y)+§
£, {(x-ay);1-a}da = f r_ {(x-ay);alda,

a=(x/y)-¢§ n a=x/y n
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A
= f f (u;l-a)du
y €
u=0
< (1)
s (3) 7 (111.D.4.10)

because fe (+) is a symmetric density. That is (III.D.4.10) is an
n

. 1 .
expression for TYT P(0 < € < |y6|) where e, is the (1-a)-Laplace
innovation random variable. Therefore, we add back to the DCADRE result

the amount

1 1/2
(=)t |, (x/y;a){P(O < e < |y8|)} (T—T% £, (x/y;a) < @,y = 0.
|y| A;/z n y A:1/2

(III.D.4.11)
We choose the following combination as the value for
P(O < e < |ys]).
i) Using the trapezoidal rule and the table of values for

the (1-a)-Laplace density we found

u=M
P,(0<e < lys|) =172 - j £, (uil-a)du . (III.D.4.12)

us|ys| "

Equation (III.D.4.12) is the average of the upper and lower Riemann sums
of the tail of the density subtracted from 1/2. Using (IIL.D.4.12)

instead of directly integrating f_ (ujl-a) from zero to lys] is
n

preferrable, because for o 2 1/2, f‘E (0;1-a) is undefined. The error in
n
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(ITII.D.4.12) from using the trapezoidal rule approximation is

h3

approximately —T% A? f (i) in the ith subinterval. Even though there

are over U400 subintervals, the second differences Azfe(i) are very much
smaller for a 2 1/2 in the interval [|y¢]|,M].

ii) A second measure of P(0<en<|y6|) is the lower sum

P,(0 < e < [ys]) = |y6|f€n{(y6);1-a}, (III.D.4.13)

since P(0 < e < |y8]) is always at least as large as (III.D.4.13). Our
approximation for P(0 < € < |y§]) is the maximum of (III.D.4.12) and

(III.D.4.13). We use the maximum because P, given by (III.D.4,12) could

1

be negative when |y§| is close to zero. This follows because FE (u;1-a)
n

is strictly decreasing for u > 0, and thus the trapezoidal rule over-
estimates the integral in (III.D.4,12).
E. PARAMETER ESTIMATION IN THE BELAR(1) PROCESS

1. Introduction

In this section, we develop estimators for the parameters in the
BELAR(1) process and report results on properties of these estimators
obtained from analytical comparisons and simulations. We examine
estimators for the location parameter, u, and the scale paramter, A,

of the series {Xn}; the parameter, a, of the random coefficient

1/2

An (a,1-a); and Y, the lag-1 serial correlation, which is a monotone

function of a.
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The theory of conditional least squares estimation for the
BELAR(1) process using the linearized residual is derived using results
from Nicholls and Quinn [Ref. 16]. We give a corollary to their Theorem
3.1 pertaining to the strong convergence and asymptotic Normality of the
least squares estimator of Y, the lag-1 serial correlation. An estimate
for a is derived using the fact that Y = E{A;/Z(a,1-a)}. Also, we show
that the joint least squares estimator of location and correlation for
the BELAR(1) process is the same as for the linear AR(1) processes.

Other estimators of lag-1 serial correlation in the BELAR(1)
process are derived using the ideas of robust estimation of Huber
[Ref. 37] and least absolute deviation (LAD) estimation as applied to
ordinary linear autoregressive models by Denby and Martin [Ref. 38] and
Bloomfield and Steiger [Ref. 39]. Although these estimators are
consistent and asymptotically unbiased in linear models, for the random
coefficient models the results of the simulation study show that they
have a bias that does not go to zero asymptotically.

The maximum likelihood estimator of a, is found using an

*MLE’
iterative technique with the initial estimate being derived from the

~

least squares estimate of serial correlation, YLS'

Many of the simulations comparing the different estimators are
conducted within the framework of SIMTBED [Ref. 15]. From the Summary
Statistics table generated by SIMTBED for each estimator, it is possible
to draw conclusions concerning the bias, the variance at different
subsample sizes, the asymptotic variance, and how fast the estimator

approaches asymptotic Normality. In the SIMTBED program, one can

specify the total number of samples examined at each subsample size.
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The total number of samples used is the product of three parameters, N,
j;i M, and NSR. Three combinations of these parameters were used. Table
- III.E.1.1 is a summary of the number and types of subsample sizes, N,
and the number of independent repetitions, M, of each type of simulation
o conducted using SIMTBED.
- TABLE III.E.1.1

Summary of SIMTBED Types

Number of
Super
Replications

o Type 25 50 75 100 125 175 250 500 (NSR)

Subsample Sizes (N)

I 2000 1000 660 500 koo 280 200 100 5
II 4000 2000 1330 1000 800 570 400 200 10
III 8000 4000 2660 2000 1600 1140 800 400 10

SR Each entry in a Summary Statistics table, which is the output of
SIMTBED after super replication, is a pair corresponding to a mean
(average over the number of super replications, 5 or 10) and an
estimated standard deviation of that mean value. From Table III.E.1.1,
;) it is clear that a large number of independent realizations was used in
:k_ the computation for each super replication and the different subsample

:f: sizes., Because of this, subsequent tests of hypothesis that we use on

the simulation outputs will be t-tests on the mean of a random sample of

1 Il
.

» & ¢ o B
PRSE Y

4.

size 5 or 10 drawn from a Normal population where o2 is unknown, but is

[NDYON

estimated from the sample.

[NE LN
A._ L ._

Before describing each estimator and simulation experiment, it

N

is convenient now to summarize the conclusions of this investigation

ey into the estimation of parameters in the BELAR(1) process:
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a. The simulation results from SIMTBED indicate that both the sample
median and sample mean are asymptotically Ncrmal estimators of u.
The asymptotic variance of the sample mean is approximately twice
that of the sample median across all values of the correlation
coefficient, Y.

b. The simulation results from SIMIBED also indicate that the mean
absolute deviation, given in (II.E.3.2), is an unbiased and
asymptoti .lly Normal estimator of the scale parameter, i. It
also has the smallest asymptotic variance of the three estimators

considered.

e 2 e
. .

¢. The least squares estimator of Y, the lag-1 serial correlation is

asymptotically unbiased and Normally distributed. Simulation

results suppcrt this conclusion.
d. Simulation of other estimators of lag-1 serial correlation based

on non-linear residuals of the form Rn = Xn—YXn + Bf(Xn,X )

-1 n-1

indicates that the value of (Y,8) that maximizes the sum of

squares of Rn is approximately (Y, ,,0).

LS’

e. Robust estimators of serial correlation based on certain symmetric
loss functions of the linear residual (other than the sum of
squares) are biased and, apparently, asymptotically biased.
SIMTBED outputs of the Huber(c), rank and LAD estimators of lag-1
serial correlation clearly exhibited this result.

f. The maximum likelihood estimator of Y, the lag-1 serial
correlation was computed by the iteration scheme given in Section

III.E.6 for simulated data from the BELAR(1) process. Results of

the simulation appear to indicate that the estimator is converging
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to a Normal distribution with a mean value equal to the true Y.
In comparison to the least squares estimator, the simulation
results indicate that the maximum likelihood estimator has a
smaller variance and bias at all values of Y.

2. Estimators of Location

a. Introduction
The sample median, m, and the sample mean, X, are two
commonly used estimators of the location parameter, u, in a stationary
process with a symmetric marginal distribution. The sample median is a
particularly attractive alernative to X when the symmetric distribution
is also thick-tailed. (It is well known that for i.i.d. processes with
a double exponential marginal distribution that the sample medi n is the

maximum likelihood estimator of u).

For i.i.d. processes, it is well known (Dudewiez, "Ref. 40:

p. 221)) that X has an asymptotically Normal distribution, N(O,/oj/nﬁ.

Likewise, m is asymptotically Normal, N{O, /1/Mnf;(x 5)}. The results

(x _) is continuous in a

for the sample median hold provided fX 5 T {
|
|
|
|
|

neighborhood around x is positive, and is bounded above.

.5’

The problem of estimating up from dependent data is more
difficult. Analytical results exist about the limiting distribution for
X in ergodic processes and for the sample median for processes
satisfying certain mixing conditions. (Mixing processes are those for

which random variables "sufficiently far apart" are aipproximately

independent).
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Since the BELAR(1) process is an RCA(1) process with i.i.d.
innovation and random coefficient processes, {Xn}, is ergodic (Nicholls
and Quinn [Ref. 16: p. 37]). Therefore X is still an unbiased
asymptotically Normal estimator of u, but the variance is modified by

the factor

1e2 7 Y- (e a-n. (III.E.2.1)
k=1

See, for example, Priestly [Ref. 33: p. 343].

The problem of estimating the median has been studied for
cases where the data are dependent. From Heidelberger and Lewis
{Ref. U41)], we have that the usual order statistic point estimate
(sample median) is still valid, but the variance is modified by a
factor, p(x _). Here p(x's) is the initial point on the spectrum of the

.5

binary process {In(x )}, where

.5

1 if xn < x,
In(x) = (III.E.2.2)
0 otherwise.

That is
|
- n
> p(x ) = lim n Var {121 I,(x o)/n}. (II1.E.2.3) r
et ‘\
;"' As was already pointed out, conditions for convergence and ‘
o Central Limit Theorems for the sample median depend on mixing i
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conditions. There are several kinds of mixing conditions. It is not
known, however, if the BELAR(1) process satisfies any of them.

However, the LAR(1) process does satisfy the mixing
conditions of Gastwirth and Rubin [Ref. 14]. Thus, for the LAR(1)
process, it is known that the sample median has an asymptotic Normal

distribution with mean zero, and variance given by

+ 00

Ly

k=—m

|| 1+

‘I_

=<

cosh(x 5Ylkl) + ginh(x 5Ylkl)} = é }. (III.E.2.4)

<

Gastwirth and Rubin [Ref. 14] showed that for the LAR(1)

process, the asymptotic variance of X is twice that of the sample median

across all values of serial correlation.

The question here is, what are the properties of the sample
median in estimating p from data of the BELAR(1) process? Also, how does
the sample median compare to X in the BELAR(1) process?

Since {Xn} from both the BELAR(1) and the LAR{1) processes
have a marginal Laplace distribution and first-order autoregressive
correlation structure, the hypothesis is that the sample median from the
BELAR(1) process behaves similarily to that generated from data in the
LAR(1) process. Also, the relative efficiency of m to X is the sam= in
the two processes.

To substantiate this assumption, the sample median and
sample mean were compared in simulation experiments in SIMTBED for data

generated from the BELAR(1) process. The simulation output is compared

to the theoretical results for the LAR(1) process.
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Tﬁf1 b. Simulation Results

o

- For a = .1 and a corresponding correlation coefficient of

Y = .1766U4, the estimators X and m were simulated in SIMTBED using a
size of Type III from Table III.E,1.1. The results are given in the

Summary Statistics in Table III.E.2.1. Looking at Table III.E.2.1 for

N = 100 and greater, there is no evidence of non-Normality from the
first four estimated moments of the sample mean. The leading
coefficient in the asymptotic expansions for E(X) and Var(X) do not
deviate significantly from the theoretical values, i.e. X is unbiased
and Var(X) = 2.8581/N.

Looking at Table III.E.2.2, the Summary Statistics at o = .1
for m, it appears that even for N = 25, m is unbiased and the sample

skewness is fluctuating about zero. The variance, however, at each

subsample size up to N = 250 deviates significantly from a hypothetical

asymptotic variance of 1.4291/N, the corresponding result for LAR(1).
This is explained by the kurtosis of the estimate m of the median which,
although decreasing with increased subsample size, is still
significantly different from O until N = 250. The leading coefficients
in the expansions for the expectation and for the varianc: are not
significantly different from O and 1.4291 respectively. Since the data
are only slightly correlated, we could have expected the sample median

to behave similarily to that of the case of the completely random

process with Laplace marginals, i.e. m is unbiascd, asymptotically

g

Normal, and has a variance with leading coefficient 1/n.

- e T O Ty

T
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For values of a = .5 and .844, with corresponding Y = .63662
and .89986, using Type II experiments as described in Table III.E.1.1,
we again compared the behavior of X and m.

From Tables III.E.2.3 and III.E.2.4, we see that the
behavior of X is as expected. The sample mean appears to be unbiased.
For N 2 250, there is no evidence of non-Normality. The estimates of
the leading coefficient in the asymptotic expansions for the variance
agree within one standard deviation of the postulated values of 9.0 and
38.

The corresponding results for m are given in Tables
I1I.E.2.5 and III.E.2.6. The sample median shows no bias and appears to
be asymptotically Normal after N 2 250. 1In each case (a = .5 and
a = .844) the leading coefficient in the expansion for the variance is
smaller than the corresponding value for the variance of the sample
median in the LAR(1) process, i.e. 4.5 and 19 respectively.

The analysis thus far has indicated that at least for data
with non-negative correlation in the BELAR(1) process, there is little
evidence to suggest that the behavior of the sample median is
significantly different than in the LAR(1) process. From Table
III.E.2.7, we see the same kind of results that Gastwirth and Rubin
(Ref. 14] reported. As sample size increases, the efficiency of X

relative to m drops to 50%.

- 161




0°0=NH ‘NVIH 31dHVYS ‘HOLWWILS]I .

b mMo—MW* wmmmmmu ﬂwﬁmmm mmmwmw SINIIDI44300 - JONVIHVA NO NOISSIHOIY J
“. MMwLNMm Mmmaum* mrmmm«no mwuwwmmmwwuw $SANIIDI4430D0 - NOISSINOIY J0 A0 AIS ! | MA
ﬁ mmmommm mNMN.“MI mmwnm~,no mwnww&mwmmnwn ISINIIDI144300 - SIOVYIAY KO NOISSIUDIN 40 NVINW . .
zo-3g0fg1g  'O-3pygh:g  ZO-349E8:8  ‘OTIPIELR  COIEEEL'R ORI ONIENC FOUERRSS 066°0 -
z0-39699°9  ZO-3RERCR  FONGMEIG  TOUIERRLR  'OUPEBL  °CMEERG OUPEUR ONMMGS §16°0 ]
2 TR R T B e 1 T3 I B THI 2 B 111 2 B (11 B B 111 R 05670
r zo-3gggeig  CO-EEEg  COIGAEQ OPLEL oG TOUUQMRR OUUREtER *OTEtE8 00670 1
P9-Y548008  TOUIGESE'R  COEEMNG ZOGREIg MR OEEY OUESEE  POUERNS 0570
1 PO-3GA4E°8-  FS-IBALY'S  ER-Af4YR  #B-IEACE-  EB-IMNEE-R-  #B-INEEQ  EB-IBAGED-  EB-dNakE-8 005°0 " L
! 79-35820°8-  TOREREIQ-  ZOUgrig-  OWEEYQ.  0NEhdRg-  *OUMEMER- *OTESES- 20-3g38e 8- 0sz°0 Y
zo-aggghig O3S 20ME6ER.  OMFEXG- 0PSB 0EREB. *OMgEE-R-  *OYENEY - 001°0 .
zo-aggggg.  ZO-IG6R:g.  ZO-INNEQ.  2OUIPEEE. oGNP FoUIRLP. FOUEEER- O 050°0 “
R TR U TR ML 1 IR T 111 M L |1 T Mt 1 B A H AT $20°0 ~ o
¢ to-agygrig.  LO-IAERLIG.  'O-3gELL8. 2033888 'OUCEARL'R- 'OUMEEER-  'OUUIEE:R- 'OTMEM? 01070 © h
L S3V1LNVAD b
b [8-39863°8  18-ISPRLCB  O-IEREEM-  8-I0FAM°E  8-3EEEE-Q-  £-IIRE-R-  FB-INEYS- $8:3k0F3-8- -402°¥3s ]
3 O L e T e I e I L2111 2 B 111 2 A £ B T 11 2 B 111 B S 150140x
1 18-36626°0-  19-I6GNEC8  [B-3V8EES-  I8-IBEIER ISCIEBLED  MG-IENMER  (INESER 18-S R- SSINMINS
3 To-apgetig  CONREIg COEIEG OUMSEY TOUMMBER OTGEER  *OTUHINRR z0-338§¢-8 ais i
4 B9-35708°0- EB-ILBAE'S  E-RSESE®  B9-IMEME'R  BB-MESER-  EB-IeECE-D-  EB-IMEE-S MR Wy e
w 00$ 0sz su sz1 00t st os sz sranvdEg ;
"\, SNO(L11343¥ OL (04S/NVIH) SOILSILVIS AYVHNHNS U
b oS
g 299£9°=A pU® ¢'=0 UITM SS0001d (T)UVIHE ]
g ayz ut ¥ Aq " burjewrysd I03 SOTISTILIS AJPUMMS QIAIWIS

€ C UTIII d719VL

,
-
4
K
v




At n e s Saetens el dni et Sat Aty

i d

A e p e e s S AR w4

A
811
§8-tht
to-35g84-8
i 113
Lo-3gk-8
L0738
Lo-39ht 3
£8-38386 8-
1o-75{81 -3-
LO-348HL 8-
LO-378EL-8-
10-344E-3-
L0-36358 8-

18-396¢ 8-
ro-f98} -8
18-34684°8
*-3518% 8
TR R

00$

- feniogs
s M0
§i5:5%)- BEEEASo

e I L

o)y OGO

g MG RS

ARG IR OIERS

MY MR R

R BN WA

gy Y. 0NN,

LG OGS ORI

I 15 S 112 S

OGO OIS

L E I TR TR

IS 18RS IS,
B OuEy S

308560 IBIHAND. LIRS,

WORRER NS TR

SIS HIRNED CENES
052 sl szt

SNOILILI4IY

98668 =L pue ppg"

AR

18-313533% 8
18-3854548 8-

0°0=0N

IMVIN 3VdNVS

‘yoLvHILE]

SSINIIDI4430D - JONVIYVA NO NOISSIHOIY

$SINIID14430D - NOISSINOIY

40 A30 ats

$SENI 10144303 - SIOVYIAY NO NOISSIHOIN 40 NVINW

10-3§02y 0 10-36£65 0 10-35882 0

10-3461% 0 10-35643 0 10-2§902 0

ST I+ | IOt L%

to-3y3p)8  OUHNER  *OMalER

zo-giE ORI TOURES

§9-35206-9-  #9-28503°8-  #8-366%8-8-
11 B TR RS TR B
Lo-3g¢sy 8. ‘OIfRELR-  TO77pLsE 8-
1o-3§32 Q- POINREL  TOTGEY,?

to-agygz e L0TIPEREe  LOTIEELE,Q

LO-IEEQNQ  OTggee POIREYS,0

183554 °8-  EB-6REE-B-  E8-37ER6-8

10345088 f284.° 84O

18-37386°8  8-dfBEE8  8-3LEN°8-
Gt 11 B R 1 R I 111 R

§9-34430°8  EB-316EY°8-  EB-dLbEY8-

001 St (115
ot (QLS/NVIN) SO11SILVLIS ANVHHNS

=0 Yy3Im SSso01d (T1)¥viag
ayz utr x Agq 1 burjzewr3lsy IA03J SDTISTIALAS Axeunms QE4IWIS

p 2 I III ATAYL

025550
to-3f{y7;0
R
203t
3Gy
18:36388 9
202454y g.
ST
to-3g451,9
to-2ggg7;9

SRHE:

£8-38342°8

A
18-35¢¢E-8-
R 1R
B8-36288 -8

[14

066°0
€16°0
056°0
006°0
oSt 0
00<°0
0sZ°0
ooL°0
0%0°0
¢z0°0

01070
$IV1LNVAD

“Y0< "¥1s
sisoLymi
SSINMINS

ais

NVIH

uun!(m“%m

163




4 o4
b
3 o
3 9
]
b
ZL6°T =XVHA QL@ E-=NINA :ONNOJ SINTVA A 1STAIM wuw

. 0°0=NH {NVIOIN 314HVS YOLVHILS3 i
M,. wmuzu _mmu*m- mmmnmm mu»mm«no :S1N312144300 - JONVIYVA HO NOISSIYOIY : .
..” Iartet] £25%8,1 11 A $9-3541038-8 1SAN312144300 - NOISSI¥OIY 40 A3Q OIS . J
” 1814 9384-42- Lyeke-8 £8-38218%¢ 8- 1S1M319134302 - SIOVHIAV KO NOISSIYSIY 40 NVIN o
3 e R LT TR LTt T B £1 T8 B 1T I 1T R B ¢ 112t B 11 066°0 M
t zo-aggpeip  z0-3gieeig  TOIRIEEQ TOUGIEQ OEER COUIMELG COMERME MR s6°0 ]
3 z0-3gg6pip OGNSR TOMFAE  TOUHYG  OELY OUEER Oy FO7EENES 056°0 M
3 zo-aggepig  20UaEGER 0D UGG PR oMY foRREy oinsed 0060 4
] e T I 1 0 A 110 B 111 8 B 1 18 By 1B B 1118 B D1 ) 0st "0 B
3 FRI660E°8  ESEATED  EBRISEE  EG-IEALECQ  gB-3SERLCR.  EG3ERNER  £0-deRel-R-  EO-3TERES 005°0 U_
: FRSEISI8-  BIEBEE'D-  ESLEMEED-  TOEMER. OURAE. OUMMES. WIS TUMsEd 0sz"0 U
3 zo-agyaeig.  20-lE3Eip ZORELD.  FOUIEGANQ. OUNERE. ONMEER.  ORMES. *oidER- 0010 < B
z0-3pgafig. 20450 TOILNSYR.  FORLIEG. FOEE. OMaEyp. oMM *0esild 050°0 © .w
s zo-3zgfig. 03985 ZOGERER.  0UNEEER-  OULHVE OUEMYG. O SOUEIHL $20°0 i
’ zo-3ggegig.  O-IMEEG.  TOILAN.  TOIBRS- 'OMMEALD- 'OMMAR toUSELS. COTERRN® oto°0 s
3 SITLLINVAD . “
g (9356568 48-3080°8-  IG-IEEEL'S-  BGCIERL'8  ES-EELER  18-d90R-  ER-IEERGR-  EB-IMR-L- ‘402 ¥3s E
: to-3gggt-g o aB1E-8 (IR R 1 B TR IR 1 B 84 [t sisoLunx "
3 BER1EE0-  1BCIARSECR  BC3EESYS- ISTIRNNER  ISIEMED MR IBaSMEd 138N SSINNINS =

, e T 8 I 1 B It 11 S B {118 A 111 By 1312 B {12 B} ) ais ]
: F8-30105°0-  SR-ISENES  EBCITBER  BRCINITR EB-BERLCR  EB-IGEMER-  &8-36BR-  EBMEAL- NvIn

! 00§ 0sz 177 11} 001 19 0s sz g 1
p’ SNO11113434 OL (0LS/NVIK) SI1LSILVLS AYVHHNS ;e
,. Z99£9°=A pue G°=0 U3Tm SS9D0Id (T)yv13ad .....
, . ay3z ut w Aq r burjewilisy I0J SOTISTIE]S Kxeumms qIaIWIS o
. §*z 3 III &4Vl .
b .




A i AdE il

oviviTd

Pl

Ml A e B 0 A Sl B

Aah vad ol can ek vt dndond Saf Sell S Sols Gl i

e Jein SiFe A S0

YoYU w 0w

HBHIE

138212

880512t
o333k -8
10-3%76¢ -8
10-3455¢-8
z0-3gRs 8
z0-3z78-8
§8-3nkeD 8-
z0-38811-8-
Z0-3§848-8-
LO-3¢EHE-3-
Lo-3gukt 8-
10-3§358 8-

18-38845-8
ho-3§5t6-8
18-3akte 8-
20386t -8
§8-3821¢ 8-

00%

SEN'9 =XVHA 616 6-=NiMA :GNNOA SINIVA A 1SIQIN wan
0°0=NH INVIQIN 31JHVS :MOLVMILS]

{1811 212t 61 8%t 1S1N312144300 - IONVINVA NO NOISSINOIY

£589, 1% 1131005 F8-283085-8 1S1N312144300 - NOISSINOIW 40 AdQ OIS
TS H1H A §8-248¢4t4-8- :S1NJ 12144302 - SIOVHIAV NO NOISSIUOIW 40 NVIN
03B COIFNER COUMRO OISO POIRERC POTEES° OTMER.° 066°0
10-agpgEig  POIPRRNIR OUMEALTE COUEBNTO LOUMEIRO POUMEREC LOTMER.S s16°0
bO-3ggElig  O3gRELIg  OIGAERIG 'OCIMEAN'R OENAE tOUMANNC 0UEENO 0s6°0
z0-33Rg:g  SO-I4R8L8  POMERL'R  'OMMEELD  ‘OUiGALMR ‘OMEMG SOUEERS 006°0
z0-3gg6pig  OuREE NG PERE OWNg BN UNERR 0570
39-IBZE8  ESCIBNIED-  EBCTEBMR-  EB-ABANYD-  ERCEER-  EBIME  EB-INMER 0050
zo-3gggeig.  20-3guEEf. 20UdERER.  ONEERR- UMMM ovlprg. UM osz'0
LT ML TR ML 1 B L 1 R 111 B R 11 Bt S 1 0010
b0-314gtig.  ZO-IARECR.  'OUIpULR.  odREEN’. 'OMEERR. FOUMGEA tOTEENS 050°0
1o-3jzakig  tOIgEER.  POIERNER. OMBES COERNE POUMERS il 1P s20°0
T R e 1 3 ML T MU | UL 1 APC i 010°0
$3V1ANVAD

18308618 BS-IDGEMCR  BO-INEEL  BMERL'S-  ERCATTES-  EBCIANEER  EB-3TERdR CRED
UHRY BeE° 13,0 %140 1110 £28%:° 2180 s1s01unx
P8-36050°8-  18-338RE°S-  MB-IMANER oSS 18-INSER-  IBIEREER  18-328%3-8- SSINMINS
20-3g645°8  OUIGREED  TONNENG OUBAAER OHELR oMERE *0TME ais
BBRNERE-  EBENAANCE- BCIMMSECS.  BBCIMELR  BBEMEV'R-  EBIOSNGCR-  EB3EEMD-S nvIw
ogz 197 szi 004 9] (14 134 1anviBAE

SHOIL111343¥8 OF

(O1S/KYIN) SOILSILVIS A¥VHNAS

08668 °=A pue ppg =0 YiTm ss900ad (T)dvidd
ayay ut w Ag 1t burjyewrlsdy I03 soTasTaels Axeuwwms qHELWIS

Q-7 U III JIEVdL

165

[P P S/ VN ¥

Ll e

._.\ .




IR e A L I R A L e e i R S e S Rt it et Jhaft liat Ja Aab SnSdlaS e L Aah st Safliad 252% Sat s |

TABLE III.E.2.7

Efficiency of X Relative tom in BELAR(1) for Y > 0

N Y = +.1766" Y = +.63662 Y = +.9
25 .64 .69 .98
50 .58 .58 .81
75 .55 .55 .73
100 .54 .52 .67
125 .52 .50 .62
175 .53 .49 .57
250 .51 LU7 .53
500 .50 .47 .48

1. For Y = +,1766 the results are based on a Type III experiment.
For the other two cases, the results are based on Type II
experiments.

We also simulated X and m for negatively correlated data

from the BELAR(1) process. Type III simulations were used for X and m

at Y = -.63662 and a Type II simulation for X at Y = -.9. From the

Summary Statistics for X in Tables III.E.2.8 and III.E.2.9, we see X is

unbiased and approximately Normal for sample sizes greater than 125,

Estimates for the coefficients for the asymptotic variance are not
significantly different from the theoretical values of .4441 and .1053.

From Table III.E.2.10, the most obvious point to be made is that

even for moderately negatively correlated data, m is not Normally

distributed even for subsamples of size 500. The sample median is

unbiased, but the kurtosis is not decreasing fast enough. The variance

of the sample median even at N = 500 is almost certainly not

(1/N)(1+Y/1-Y). However, the leading coefficient in the expansion for
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the asymptotic variance is within a standard deviation of the
hypothetical values (1/N)(1+Y/1-Y). This would indicate, for the case
of negative correlation, a much slower convergence of the sample medI:zn
to Normality than for positively correlated data.

For negatively correlated data from the BELAR(1) process, we
have observed that X does not lose efficiency relative to m as fast as
for non-negatively correlated data. In fact, from Tables III.E.2.8 and
ITI.E.2.10, it is clear that the variance of X is smaller than m for
subsample size N s 100.

3. Estimators of Scale

a. Introduction
In the case of estimating the scale parameter, A, we

considered three estimators. Since Var(xn) = 212, we considered

~

A1 = S/Y 2 where

N
Yy (X, - X)2. (III.E.3.1)

Since the maximum likelihood estimator of A for an i.i.d. sample with
marginal Laplace distribution is the sample mean absolute deviation

about the median, we set

1
Ay =g L |x) - m]. (III.E.3.2)
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As a third alternative, we chose the scaled median absolute deviation

about the median,

med IXi B m[
3 = i W;. (III.E.3.3)

The scaled median absolute deviation is a frequently used robust
estimator of scale [Ref. 38]. In the simulations, we assumed that Xn
are Laplace with median = mean = 0 for all n. Table III.E.3.1 contains
a summary of the type simulation (as defined in Table III.E.1.1), the

~ - -

estimator(x1,xz,x3) and the values of a and Y that were used.

TABLE III.E.3.1

Summary of Simulation Schedule for Estimators of A

Y -.89986 . 17664 .63662

a .84l .1 .5
Estimator

;1 Type II Type III Type 1

;2 Type I1 Type III Type I

;3 Type II Type III Type I

b. Simulation Results
In the Type III simulation (See Tables III.E.3.2 -
III.E.3.4), using slightly correlated (Y = .17664) realizations of the

BELAR(1) process, we found the best estimator of A to be X,, the sample

2’
mean absolute deviation. It appears to be unbiased for all subsample

sizes. The skewness and kurtosis are decreasing with increased sample
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sizes. But even for N = 500, the skewness is still significantly
different than 0. Using two-sided t-tests with 18 degrees of freedom
for the equality of means of two Normal populations with unknown
variances at the 90% confidence level, we reject each of the hypotheses
independently that: (1) Var(;1) = Var(xz) and (2) Var(;1) = Var(;3).

The mean relative asymptotic efficiency of AZ and A3 to A1 are estimated
from the regression on variance coefficients to be 76% for A1 and 60%

for A,.
or 3

Both A1 and A3 appear from the simulation to be biased.

From the second coefficient in the mean of regression on average in

Table III.E.3.2, A1 appears to have a negative bias of order(1/N). From

Table III.E.3.4 it appears that A, has a positive bias of order(1/N).

3

However, since the leading term in the expansion of the mean for both

estimators is the true value of Y, it appears that both A1 and A3 are

asymptotically unbiased.
When we considered moderately to highly correlated data (see
Tables III.E.3.5 - III.E.3.10), the differences in the behavior of the

estimators were not as easy to discern. The particular bias of A1 and

A, was even more apparent, especially at the smaller subsample sizes.

3

As |Y| increased, so did the expressions for the asymptotic variances.

At each of the subsample sizes, in both types of correlation, A, had the

3
highest estimated variance. The variance of x3 was significantly
different than that of A2 at all levels of significance and subsample

sizes up to N = 500, However, we could not reject that the asymptotic

variances of A1, A2 and A3 were the same at each of the two levels of

correlation.
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4, Least Squares Estimation of Serial Correlation

In tris section, it is assumed, unless otherwise stated, that Xn

has a standard Laplace (u = O,A = 1) distribution. If not, standardize

Xn by

! S ——
Xn = ’ (III.E.4.1)

~

where uy and A will be specified from those estimators already discussed

in III.E.2 and IlI.E.3.

TLs
is derived. First, we show that the BELAR(1) process is an RCA(1)

The least squares estimator of the lag-1 serial corrlation,

process o° Nicholls and Quinn [Ref. 16]. Then, we define the linearized
resicuual in the BELAR(1) process and state some of its properties. From

these properties and some results from Nicholls and Quinn for RCA
processes, we derive the asymptotic properties of Y

-~

of YLS are ob erved also in the simulation results for selected values

Ls® The properties

of Y. Finally, the joint least squares estimator of location and serial

correlation are derived “or the BELAR(1) process.

Rewriting (III.D.1.1) by adding and subtracting Yxn-1’ we have
X = ¥% .+ (A %(atma) - YIX__. + € (III.E.4.2)
n n-1 n ! n-1 n’ Tt
1/2 .
Wwhere Y = EI{An (a¢,1-a)} as given by (III.C.2.3) for

1

g =1 :{An/z(a,1—a) - Y} is an i.i.d. process stochastically independent

of the i.i.d. {sn}. The variance of the random coefficient is (a - Y?)
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for all n. As can be seen from (III.C.2.5) and the fact that 0 < a < 1,
_,: if we know a, then we also know |Y| and vice-versa. That is, in the
": BELAR(1) process, there is only one independent parameter to estimate
:l_i: for the correlation. Now, we recognize (III.E.4.2) immediately as an
RCA(1) process of Nicholls and Quinn [Ref. 16]. Since {en} and
{A:l/z(a,%a) - Y} are each identically distributed as well as being
serially independent and independent of each other, we have by theorem
' 2.7 [(Ref. 16] that {Xn} is the unique strictly stationary and ergodic
- solution to (III.E.4.2).
A:j\ There arc two ways to look at the linearized residual in the
:~ BELAR(1) process just as described in Chapter II for the NLAR(1) model:
.
Ro= (A %(a,1-0) - YIX__, o+ e, (III.E.4.3)
or
‘ Ro= X - YK .. (III.E.4.4)
‘- rrom (III.E.4.4), we see that since {Xn} is strictly stationary, so is
{Rn}. Also, we see E(Rn) = 0 and Var(Rn) = 2(1-Y?)., Lawrance and Lewis
[Ref. 22] proved that the Rn are uncorrelated, but in general, not
independent. From (III.E.4.3), we note that for any n, Rna € unless
- a = 0. Except for when a = 0 or 1, Var‘(Rn) > Var‘(sn). As o increases
from zero to one, both Var'(Rn) and Var(en) decrease monotonically from
two to zero. This is evident from the definition of Y in (III.C.2.5)
A with £ = 1.
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Two other properties of {Rn} are obtained from (III.E.4.3) by

conditioning on the independent, identically distributed processes {sk}

and {Al/z(a,1-a) - Y} up to time k =n - 1. We have

1/2
E(R [{e,,A “(a,1-a) = Y}; Kk = 1,2,...,n-1]
-x E(AY%(a1-a) - ¥} + Ee.) = 0 (III.E.4.5)
n-1 n n ’ tEe

because {A;/Z(a,1-a) - Y} and e, are independent of the process through

time n-1 and Xn-1 is a function only of the process through n-1.

1/2
ECR? [ {e,, A", “(a,1-a) = ¥}; k = 1,2,...,n-1]

N 2 2 1/2 oy o2
S ECel) + xn-1E[{An (a,1-a) - Y}2]

! = 2(1-0) + x?_, (a~v?), (III.E.4.6)
A

i, which is only a function of a or Y? alone, since a determines Y? and

vice-versa.
Now using (III.E.4.4) and a given realization of [Xn} of size n,

o n

- we minimize R; with respect to Y to obtain the conditional least
v i=2

- squares estimate for Y. This is the same procedure as described for the
o NLAR(1) process. We have

&N - n n

. = 2

. Ls [’Z xixi_1) ) xi_]] . (III.E.4.7)

N i=2 =2
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Two problems can occur using (III.E.4.7), especially for small

sample _.izes. For the BELAR(1) process defined by (III.E.4.2),

1 Y 2 0, and yet it is possible that Y . < 0 or |Y

[\

If

LS wsl > 1

-1 < YLS < 0, Wwe Wwould estimate that the sample {Xn} came from the

BELAR(1) process with the negative sign on A;/Z(a,1-a). Ir |Y] > 1, we
would estimate Y by +1 or -1.
In order to obtain the "least squares" estimate for a, we solve

numerically for a q in

5 F(aLS+1/2)

- F(aLs) ) (III.E.“.g)

|YL3| =

~ -~

for a given Y o from (5.7) if |YLS| < 1.

The estimator YLS given by (III.E.U4.7) nas the following

properties which we state as a corollary to Theorm 3.1 [Ref. 16]:

CORROLLARY. For {Xn} given by (III E.4.2); {Rn} in (III.E.4.3)

and (III.E.U4.4), the least squares estimator Y has the following

LS

properties:

~

b) Since E(X;) =24 ¢ =, (N-1)1/2(Y -Y) has a distribution

LS

which converges to the Normal with a mean of zero and a variance oi

given by
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o§ = 1+5a-6Y%, (III.E.4.9)

The proof follows from Theorem(3.1). The strict stationarity
and ergodic nature of {Xn} leads to the almost sure convergence. The
results of (III.E.4.5) and (III.E.4.6), together with Billingsley's
Martingale Central Limit Theorem provide the results for the asymptotic
Normality of YLS’

A strongly consistent estimator for the variance, is also

oi,
given in [Ref. 16] for the general RCA(1) process. For o$ in

(III.E.4.9), this estimate becomes

n
~ xl.
_ (1-&,.) n (G, .-Y2.) .2 i-1
32 - (“n‘) 2] xp e 208 =2 . (III.E.4.10)
y 2 l=1 2
SRS 1 X
1=c i=2
For large n (III.E.4.10) is approximated by
n
-~ xt.
(n-1 (&, .-Y2_. ) .z i-1
82 - (18, ) LS LS 1-2 , (III.E.4.11)

E igzxi'1 % 2

-~

where YLS is from (III.E.4.7) and &g (III.E.4.8).
Simulations of the least squares estimator of Y were conducted
for selected values of Y in SIMTBED using Type III plans. The results

are summarized in Tables III.E.4.1, III.E.4.2 and [II.E.4.3. The
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results reflect the theoretical behavior of the estimator as derived
above.
We note that the joint conditional least squares estimators of u

and Y in the BELAR(1) process are the same as in the linear AR(1)

n
processes. Minimizing the sum ) Rf where now
i=2
R = (X;=w) = Y(X;.,"w), (III.E.%4.12)

leads to the following joint estimators for p and Y

n -~ n -
= (IXx, =y IX._.) 7/ (n=1)(1=7), (III.E.4.13)
. i i=1
i=2 i=2
- P <P aly 2
Y-l WX =B /L (X =W (IIL.E.4.14)
i=2 i=2

i =X (III.E.4.15)

=X)2. (III.E.4.16)

We now turn in the next section to the question of alternative

estimators for Y given that y = 0 and A = 1.

190

s e e M . e e - - - o
e T e R . BN - c ST . et T e e e
AP e e S N

SR e T T N T A L e e e T T a T AR e ;l
P P RS PR WP, (V. U VLR, PR PR P A R ATAR T e A o L e A A A A AT AL A A A e T e A e b )



————r— R T T T P NN T NN S e

5. Other Estimators of the Lag-1 Serial Correlation

a. Estimators Based on a Non-linear Residual

In this section, we explore other possibilities for
estimating Y in the BELAR(1) process. There is a question as to why one
should use the linear residual since the BELAR(1) process is a random
coefficient process which is non-linear. Secondly, why should you
minimize the square of the linear residual as opposed to minimizing some
other symmetric loss function which is a function of the linear
residual? The answer to both questions is that the least squares
estimator of Y based on the linear residual out-performed other
estimators in the simulation experiment.

Consider the following types of non-linear residuals

2
X ~YX, _ B(X -2), (III.E.5.1)

=¢)
]

[ - - 2 i
Rn Xn YXn_1 BX n_181gn(Xn_1). (III.E.5.2)
*
From (III.E.5.1), it follows that Rn has zero mean and

Var(R_) = 2(1-Y2+1082%), (III.E.5.3)

*
yR__.) = 20aB?. (LII.E.5.4)

Cov (R n-1

S x5 %

*
Introducing the extra parameter, B, makes the residuals, Rn, correlated
unless o = 0 or B = 0, If B is zero, then we again have the usual
linearized residual in (III.E.4.4). If B? = Y2/10, then the variance is

a constant, but the residuals are still correlated. It is easy to
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compute the least squares estimators for Y and 8 from (III.E.5.1) and

(III.E.5.2). We simulated the estimators of Y and 8 and compared them
to the results based on (III.E.4.4) with B = 0. From Table III.E.5.1,
Wwe see that the different estimators of Y from all three residuals are
close to the true Y, The result is that the estimates of B are very
close to zero.

To see how much the value of Y could change with 8 fixed at

some non-zero values, we simulated the least squares estimator of Y with
8 = 0 and the estimator of Y based on (III.E.5.1) with B = Y/ 10 and

again with 8 = -Y// 10. From Table III.E.5.2, we see that B # O
severely alters the estimate of the serial correlation. Therefore, in
the remainder of this subsection, we consider alternative estimators for
Y in the BELAR(1) process to be only those based on the linear residual.
b. Estimators Based on the Linear Residual, Rn

Besides the asymptotically unbiased least squares estimator,
we considered the following well-known estimators of Y in linear AR(1)
models:

1) The Huber(c) function as described by Denby and Martin [Ref. 38].

~

The estimator, Y is the value of Y that satisfies the

H!

equation

(III.E.5.5)

n
Z Xt (%Y%) = 0,
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“ TABLE III.3.5.1

. e
MRS S o B 2 ‘*

Simulation Results for Various Definitions of Rn in BELAR(1)

-

;‘ 1. N =500 a = .5 Y = Corr(xn,xn_1) ~ ,63662
¥ DATA Y 0 Y 8 ¥ g
g X1 .56891 0 .57192 .00279 .62082 -.017T1
X2 .61996 0 .61630 -.00815 .56054 +.01637
- X3 .62651 0 .62604 .00358 .78189 -.05808
- X4 .57995 0 .58374 -.01865 75716 -.07208
- X5 .59236 0 .59233 -.02100 .70995 -.04748
M) AVG .59754 .59807 -.00829 .68607 -.03580
: STD .02499 .02257 .01154 .09330 .03535
% BIAS -.03908 -.03855 -.00829 +.04945 -.03580
?; 2. N = 1000 a = .5 Y = COPP(Xn,Xn_1) = 63662
- W o ¥ B T B
”‘, Ls B = B B
N Y1 .63026 0 .62955 -.00423 .62985 .00013
> Y2 .67422 0 .65653 .02520 .59178 .03095
Y3 .62566 0 .62921 -.00590 .59646 .01093
Y4 .67738 0 BTTTT .00233 .60522 .02359
, Y5 .6U664 0 L6UT8Y -.00560 .62841 . 00581
. AVG .65083 .64818 ,00236 L61034 .01428
3 STD .02411 .02032 .01320 .01782 .01273
L BIAS +.01421 +,01156 +,00236 -.02628 +,01428
s 3. N = 1500 a= .75 Y = Corr(Xn,xn_1) = .83U463
: mm g seo ¥ ) v 3
DATA LS 8 B
- Z1 .81183 0 81671 .00797 .86364 -.01821
. z2 .80699 0 .80700 -.00040 .82072 -.00511
: Z3 81777 0 .81795 -.00160 .83399 -.00641
. Z4 .85279 0 .85569 -.00728 .89116 -.00193
< AVG .82235 .8243% -.00033 .85238 -.01041
- STD .02077 L0217 .00629 .03147 .00598
- BIAS  -.01229 -.01029 -.00033 +.01775 -.01041
2
b
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TABLE III.E.5.2
Simulation Results for Various Definitions
of Rn to Estimate Y Given B in BELAR(1)

N = 500; a = .5 Y = .63662
" o¥ Y ok -Y
DATA (Y, |8 = 0) (v'|g="—) (v'|s = )
- L /10 /70
1 .56891 .27552 .27410
2 .61996 .21515 .26257
3 .62695 . 38621 . 38450
4 57995 . 34356 .39730
5 .59236 .36082 . 40557
where
t if |t]| s e,
¥ (L) = (III.E.5.6)

¢ Sign(t) if [t] > c.

The corresponding weight function wH(t) is WH(t)/t and ¢ is

a tuning constant. As c goes to infinity WH(t) approaches t and YH is
the least squares estimator of Y. If ¢ = 0, we have the solution of
(III.E.5.5) is the median of X /% q-

For ¢ other than 0 or », there is no closed-form solution to
(III.E.5.5). We obtain the Huber(c¢c) estimator of Y by iterating the

following scheme:

(III.E.5.7)
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~

where Y1 is the least squares estimator of Y and

median |X, |
i

. —EeTTE— (III.E.5.8)

S
is the scaling constant for the Ri' If Y =0, then Sr is the median
absolute deviation estimator of the scale parameter in the Laplace
distribution as given in Section III.E.3. Typical values of ¢ are 1,
1.5, 2. We use for illustration ¢ =1 in the simulation along with Y

A

the least squares estimate, and YM’ the median (Xi/xi—

LS’

1)

2) The Least Absolute Deviation (LAD) estimator of Y is the minimizer

of

n
LRt S (III.E.5.9)
i=2

~

The solution is, YWM’ the weighted median of xi/xi_1 where

the weights are xi_ for i = 2,...,N.

1

Denby and Martin [Ref. 38] reported that the Huber(c)
estimates are consistent and asymptotically unbiased for linear AR(1)
models. Bloomfield and Steiger [Ref. 39] showed that the LAD estimator
is strongly consistent and asymptotically unbiased for linear AR(1)
models. In Figures III.E.5.1 - III.E.5.4 are examples from SIMTBED of
the behavior of these estimators in simulated data from LAR(1), a linear
AR(1) model with Laplacian marginals and AR(1) correlation structure

given in Chapter II. These results appear to be consistent with the

results reported above for linear AR(1) processes. The leading

coefficient in the expansion for the mean of each estimator does not
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differ significantly from the true value, 0.63662. We also see that the
median (Xi/xi-1) and the weighted median (xi/xi_1) estimators are
considerably more efficient than either the Huber(c) estimator in Figure
III.E.5.3 or the least squares estimator (¢ = ») in Figure III.E.5.4.
Since the least squares estimator remains asymptotically
unbiased for the BELAR(1) process as was shown in Section III.E.4, it
was of interest to observe how the Huber(c) estimators, ¢ < «, and the
LAD estimator of Y would behave. Considering the ordering suggested by
the simulation results in the LAR(1) process, it would seem possible
that the Huber(c) estimates could be better than the least squares
estimator of Y. In the boxplot analyses in Figures III.E.5.5 -
III.E.5.8 are the results of the simulation for Y = .63662, but for
data from the BELAR(1) process. The boxplots in Figure III.E.5.5
display the theoretical behavior of the least squares estimator of Y.
The other estimators of Y appear to be converging to other values
YO = Y. To see this, note the first entry in the coefficients for the
asymptotic expansion of the mean of ; in Figures III1.E.5.6 - III.E.5.8.
In each case Y, > Y. Also from the estimate of the standard deviation,

0

we assert that YO is significantly larger than Y for each of the

alternative estimators investigated here, because the difference,

A |y - Y0|, is larger than four standard deviations.

f.‘.";

v

el For the BELAR(1) process, we observe a reversal from the
ﬁ}i LAR(1) process in preference for the estimator of Y. We will use the
o

5;5 least squares estimator as the initial estimator of Y in the iterative
o

Ry procedure for finding the maximum likelihood estimator of Y which we
N

P develop next.

o
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6. Maximum Likelihood Estimation of Y

a. Introduction

In this section, we develop the maximum likelihood estimator

TMLE "
the expression for the logarithm of the likelihood function, L(a), in

of the lag-1 serial correlation in the BELAR(.) process, We use

(IT1I.D.2.12) in an iterative procedure to find the values of a and the
1/2

sign of An (a,1-a), that minimizes -L(a); call the pair (aMLE' sign).
Since knowing a and the sign of A;/Z(a,1-a) uniquely defines Y, YMLE can

be found from (III.E.H4.8) using (&MLE’ sign).

We consider only the univariate problem. That is, we have
assumed that {Xn} is marginally Laplace distributed or have determined
from Q-Q plots that the best %-Laplace fit to the data is when % = 1.
Secondly, we assumed that {Xn} is standard Laplace (y = 0; A = 1) or
that {Xn} has been standardized using a pair of estimators (i, ;) from

Sections III.E.2. and III.E.3.

As a function of a, (III.D.2.12) is very complicated. There

is little hope of being able to analytically solve for the critical
values of a. In fact, the evaluation of a derivative of (III.D.2.12) is
at least as expensive computationally as the function values themselves,
since (III.D.2.12) contains exponential functions of a. However, since

this is a one-dimensional optimization problem, there are IMSL routines

that will perform the search without using deviatives--Golden Section

v, v

+

search; bisection method; or interpolation routines.

-t
| -

4
-

We chose the IMSL routine ZXLSF which performs a one-

dimensional search for a minimum of a smooth function in a closed

TFT Y
v

. D)
. .

4 lll-l
N P

interval using quadratic interpolation. The FORTRAN routine which

i

2
't
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evaluates (II1.D.2.12) is formulated so that ZXLSF is searching on the
interval (-1,1) where a < 0 implies that conditional densities of the
form (III.D.2.10) are being evaluated instead of those given by
(II1.D.2.9) when a > 0. The initial value for a to start the iteration
procedure of ZXLSF is a four-digit approximation (&LS' si@an)
corresponding to the least squares estimate of serial correlation, ;LS’
obtained from (III.E.4.8).

The queston of accuracy in the calculation of (III.D.2.12)
is especially important because the likelihood surface is extremely flat
in many cases. We want some assurance that ZXLSF is efficiently
searching for the optimum and not "chasing roundoff errors". This
happened before we increased the accuracy parameter in DCADRE and used
double precision. In order to assess the accuracy of our calculations,
we constructed first- and second-divided differences for values of a and
(ITI.D.2.12). The divided differences are approximations for the
derivatives. For those simulations that we checked, there was one
transition of the slope through zero at the critical point found by
ZXSLF. The second-divided differences at all points in the vicinity of
the critical value were positive indicating the general convex upward
shape of (III.D.2.12). Sometimes there was some fluctuation in values
of the second-divided differences, but no change of signs near the
reported optimum.

The fluctuating values of the second-divided difference
indicated some noise in the calculations. This occurred in two places.
If the second-divided difference covered points on both sides of

a = 1/2, then there was often a jump in the value of the second-divided
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difference. This occurred because of the change in the method of
calculating the conditional density when a changed from a < .5 to
a 2 .5. Other times, slight aberrations in the observed pattern of the
second-divided differences occurred for values of a that were small,
0 <a< .15, This is attributed to the fact that DCADRE evaluations for
the table of values of the (1-a)-Laplace density (0 < a < .15) in many
subintervals was not behaving regularly. The computed value was
accepted because the estimated error was small, relative to the accuracy
requirements. The important consideration, however, was that no error
in calculating (III.D.2.12) should be so large as to falsely indicate a
change in convexity in the vicinity of an extremum, so that ZXLSF would
be ineffective at locating it.

The selection of a good starting point in this procedure is
also important. It is desirable to commence the iteration in ZXLSF as
close to the global optimum as possible in order to reduce the
possibility of converging to a local optimium. Note, also, that as a
function of a, the conditional density is not necessarily convex and
often is not even unimodal across the range from Y = +1 to ¥ = -1.

Since (III.D.2.12) is the logarithm of the product of such
functions, there is no assurance that (III.D.2.12) has a single relative
maximum especially for small sample sizes. When the sample size is
small, it is advisable to pick a starting value for the iteration on
both sides of a = 0. Select the maximum likelihood estimator to be the
one with the higher value of L(a) if the routine produces two different

~

a's, corresponding to the pairs (&1,+) and (&2,—).
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Since we know that YLS

unbiased and asymptotically Normally distributed estimator for Y, we

chose the value of o and model corresponding to Y

is a consistent, asymptotically

LS as our initial guess
in ZXLSF.
b. Simulation Results

The maximum likelihood routine for estimating Y was tested
in simulations using computer generated data from the BELAR(1) process
with known parameter values of &, u, A and a. By performing M
independent simulations of sample size N (where N is increased for each
set of M simulations) and fixed a, we were able to compare the standard
MLE to that of the initial least

for which the asymptotic distribution is Normal.

deviation and bias (if any), of Y

squares estimator YLS’

Changes in the Normal plots for one set of M simulations for N small to
a second set of M simulations for a larger N would give some indication

of how fast Y,

MLE is or is not converging to a Normal distribution.

Both M and N were small in the z.mulations for two reasons.

Since the asymptotic distribution of Y was known, it was of more

LS

interest to see how much better Y

MLE “Was for the smaller samples (i.e.,

~

was the bias smaller for YMLE

the run times for calculating (III.D.2.12) for N < 200 was long. The

or was it, in fact, unbiased). Secondly,

evaluation per sample of size N = 25 ranged from 100-300 secs. For
N = 175, the run times ranged from 700-950 secs.

Figures III.E.6.1, III.E.6.2 and III.E.6.3 are the Normal
plots of twenty realizations of the maximum likelihood estimator of
serial correlation and the least squares estimator of serial correlation

for simulated data from the BELAR(1) process for selected values of a
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and for two subsample sizes, SSN., The layout provides for two-way

YMLE from smaller SSN can be compared to Y for

comparisons. That is, MLE
larger SSN. Likewise, for a given SSN, Y can be compared to Y

MLE LS’
which is known to have an asymptotic Normal distribution. The straight
line in the Normal plots corresponds to a Normal distribution. The
curved lines correspond to the Kolmogorov-Smirnoff bounds calculated
from the data at the 95% confidence level by the routine in the IBM
experimental APL routine called GRAFSTAT.

It appears from these figures that for the larger values of

SON, YMLE and YLS fit Normal distributions better than the corresponding
samples from the smaller values of SSN. It also appears that Y fits

MLE

a Normal distribution as well as the YLS for the larger values of SSN.

This supports the notion that the maximum likelihood estimator is
converging to a Normal distribution.

Figures III.E.6.4, III.E.6.5 and III.E.6.6 are the
corresponding scatter plot analyses for the data in the previous figures

for the larger value of SSN. It appears that YMLE and YLS have a

positive correlation coefficient which becomes more pronounced as the

data becomes less correlated. The distribution of YMLE also appears to

-~

have a smaller variance than YLS' This effect is more pronounced for

more highly correlated data. Compare, for example, the estimated

standard deviation of YMLE and that of YLS from the table in Figure

TII.E.6.4 with the corresponding entries in the table from Figure

II1.E.6.6.
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F. L-LAPLACE MOVING AVERAGE MODELS

1. Introduction

In this section, we derive a time series model that has an
2-Laplace marginal distribution and the correlation structure of a
linear qth-order moving average model. This construction uses the
square root Beta-Laplace transform given in Section III.B.3. The first-
order model retains the full range of correlations up to 1/2.

2. The First-Order Moving Average Model

Let {Ln(l-a)} be an i.i.d, sequence of (f-a)-Laplace random
variables; {A;/2(a,1-2a)} be an i.i.d. sequence, independent of
{Ln(l-a)}, where A is a Beta (a,%-2a) random variable and 0 < a < %/2.
Both the innovation and the coefficient sequences are independent of
X

X Then the sequence {Xn(l} given by

n-1’ “n-2’ °*°

X (1) = L (-a) + A "%(a, 02001 (2-a), (III.F.2.1)

has a marginal f-Laplace distribution and an MA(1) correlation structure
such that 0 < Corr(X ,X ) < 1/2.
n’ n-1

To see that Xn(l) has an %-Laplace distribution, first note that
by the square root Beta-Laplace transform theorem of Section III.B.3,
the distribution of the product A;/Z(a,l-Za)Ln_1(2-a) is a-Laplace.
Then note that Xn(l) is the sum of two independent random variables, one
of which has an (f-a)-Laplace distribution and the other has an a-

Laplace distribution. So, if ¢X(w) is the characteristic function of

Xn(l), then
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1
o) = %T‘J’

L-a E 1

1+w?

a 1 L
= Em‘f% . (I1I.F.2.2)

To see that {Xn(l)} has the correct correlation structure, first

note that by the construction of (III.F.2.1), X is explicitly

n-k
independent of X  for |k| 2 2. Therefore, Corr(X ,X _ ) is zero for
k| 2 2.

For k = 1, we have, after some simplification

ar(a+‘§) I(2+1-a)
g Corr(Xn,X ) = . (ITI.F.2.3)

n-k lr(a+1)F(2-a+%)

b

.

" Finally, note that in the limit as o » 0, (III.F.2.3) approaches
.

zero. Also, as a » /2, (III.F.2.3) approaches 1/2.

172

Replace A1;2(a,2-2u) in (4.1) by —An

(a,t-2a), we have a full

range (-1/2,0) of nonpositive lag-1 serial correlations.

3. The q-Order Moving Average Model

The MA(q) model for q 2 2 is the extension of the MA(1) model
given in (III.F.2.1). Let {Ln(l-qa)} be an i.i.d. sequence of (i-qa)-
Laplace random variables. Let [A;/i {a,2-(q+*1)a}] for i = 1,...,q be

’

i.i.d. sequences, independent of each other and of {Ln(l-qa)}, where

A i is a Beta {a,%-(q+1)a} random variable for all n and all

n,
i=1,...,9. Also, 0 < a < &/(q+1). Both the innovation and each of
the coefficient sequences are independent of Xn-1’xn-2"’°' Then the

sequence {Xn(l)} given by

z aﬁa‘l;. e 37 C TV

Y

‘.
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2
n,i

X (L) = L (%-qa) + % !’
n n

{a,2-(q+1)all_ .(R-qa), (III.F.3.1)
i=1 At

has a marginal %-Laplace distribution and an MA(q) correlation structure
for 0 < a < &/(q+1). When a = 0, then {xn(z)} is an i.i.d. sequence;
when a = %/(gq+1), then the moving average is an equal weighted average
of gq+1 i.i.d. a-Laplace error terms Ln(a).

To see that Xn(l) is an %-Laplace random variable, first note
from the square root Beta-Laplace transformation theorem o° Section
II1.B.3, that each product Alf?{a, 1—(q+1)a}Ln_i(2-qa) has an a-Laplace
distribution.

But the sum of q i.i.d. a-Laplace random variables has a qa-

Laplace distribution. Thus, Xn(l) is the sum of two independent random

variables and its characteristic function is obtained as the product

q
1 -qa 1 a
pylw) = %1+m2] 1 %1+w2
i=1
_ 1 £-qa | 1 qa _ 1 g
= Emj% E'l—"_u?% = Em‘fg . (III.F.3.2)

The correlations are truncated at lags |k| 2 q+t. By the

construction of (III.F.3.1), Xn is explicitly independent of Xn-k for

|| 2 q+1.

Negative correlations are obtainable with Zq choices for

/?{a,2=(q+1)a}] in

/
replacing or not replacing [A; f{a,ﬁ-(q+1)a}] by ['AL {
’ y

(III.F.3.1).
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This model can be generalized from the one-parameter case by

replacing qa in (III.F.3.1) with a; in each term in the sum, and

q
replacing L (%-qa) by L _(&-q I a,).
n n =1 i
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IV. RESIDUAL ANALYSIS COMPARISON OF THE NLAR(1)
AND THE BELAR(1) PROCESSES

A. INTRODUCTION

Lawrance and Lewis {Ref. 22] developed a'higher-order residual
analysis for non-linear time series with autoregressive correlation
structures. Specifically, they developed a third-order analysis based
on the cross-correlation of the linear residual, Rn’ and its square at

lag k, R;_ They applied the a